At a very low specific speed (VLSS), pumps normally suffer from high disk friction losses. In order to solve this issue, it can be helpful to use a different centrifugal pump design, which is not often found in the pump industry: the Pitot-tube jet pump (PTJ pump). It shows superior performance at low specific speed due to a rather unconventional working principle, described in detail in this paper. The key design feature of the PTJ pump is the (fixed) pick-up tube. Its geometry has not varied over the last decades; it is referred to in this study as “initial” or “standard” design configuration. However, optimizing the pick-up tube might lead to a considerably higher performance. Therefore, a parameterized three-dimensional (3D) computer-aided design (CAD) model is used in this study to investigate the impact of shape deformation on pump performance with the help of computational fluid dynamics (CFD). Two CFD approaches are presented and compared for this purpose: a computationally efficient approach with limited accuracy (low-fidelity method) and a more detailed, but computationally more expensive, high-fidelity approach. Using both approaches, it is possible to obtain highly efficient PTJ pumps. As a consequence, first design rules can be derived. Finally, the optimized design has been tested for various operation points, showing that the performance is favorably impacted along the complete characteristic curve.

References

References
1.
Stepanoff
,
A. J.
,
1957
,
Centrifugal and Axial Flow Pumps: Theory, Design, and Application
,
Wiley
,
New York
.
2.
Pfleiderer
,
C.
,
2005
,
Strömungsmaschinen
,
Springer
,
Wien, Germany
.
3.
Kurokawa
,
J.
,
Matsumoto
,
K.
,
Matsumoto
,
K.
,
Matsui
,
J.
, and
Kitahora
,
T.
,
1998
, “
Performances of Centrifugal Pumps of Very Low Specific Speed
,” 19th
IAHR
Symposium on Hydraulic Machinery and Cavitation
,
H.
Brekke
, ed.,
World Scientific Publishing
,
Singapore
, Vol.
1
, pp.
833
842
.
4.
Gülich
,
J. F.
,
2010
,
Kreiselpumpen: Handbuch für Entwicklung, Anlagenplanung und Betrieb
,
Springer
,
Berlin
.
5.
Osborn
,
S.
,
1996
, “
The Roto-Jet Pump: 25 Years New
,”
World Pumps
,
1996
(
363
), pp.
32
36
.
6.
Pedersen
,
N.
,
Larsen
,
P. S.
, and
Jacobsen
,
C. B.
,
2003
, “
Flow in a Centrifugal Pump Impeller at Design and Off-Design Conditions—Part 1: Particle Image Velocimetry (PIV) and Laser Doppler Velocimetry (LDV) Measurements
,”
ASME J. Fluids Eng.
,
125
(
1
), pp.
61
72
.
7.
Byskov
,
R. K.
,
Jacobsen
,
C. B.
, and
Pedersen
,
N.
,
2003
, “
Flow in a Centrifugal Pump Impeller at Design and Off-Design Conditions—Part 2: Large Eddy Simulations
,”
ASME J. Fluids Eng.
,
125
(
1
), pp.
73
83
.
8.
Feng
,
J.
,
Benra
,
F.-K.
, and
Dohmen
,
H. J.
,
2011
, “
Investigation of Periodically Unsteady Flow in a Radial Pump by CFD Simulations and LDV Measurements
,”
ASME J. Turbomach.
,
133
(
1
), p.
011004
.
9.
Derakhshan
,
S.
,
Pourmahdavi
,
M.
,
Abdolahnejad
,
E.
,
Reihani
,
A.
, and
Ojaghi
,
A.
,
2013
, “
Numerical Shape Optimization of a Centrifugal Pump Impeller Using Artificial Bee Colony Algorithm
,”
Comput. Fluids
,
81
, pp.
145
151
.
10.
Cao
,
S.
,
Peng
,
G.
, and
Yu
,
Z.
,
2005
, “
Hydrodynamic Design of Rotodynamic Pump Impeller for Multiphase Pumping by Combined Approach of Inverse Design and CFD Analysis
,”
ASME J. Fluids Eng.
,
127
(
2
), pp.
330
338
.
11.
Alemi
,
H.
,
Nourbakhsh
,
S. A.
,
Raisee
,
M.
, and
Najafi
,
A. F.
,
2015
, “
Effects of Volute Curvature on Performance of a Low Specific-Speed Centrifugal Pump at Design and Off-Design Conditions
,”
ASME J. Turbomach.
,
137
(
4
), p.
041009
.
12.
Furuya
,
O.
,
1985
, “
An Analytical Model for Prediction of Two-Phase (Noncondensable) Flow Pump Performance
,”
ASME J. Fluids Eng.
,
107
(
1
), pp.
139
147
.
13.
Friedrichs
,
J.
, and
Kosyna
,
G.
,
2002
, “
Rotating Cavitation in a Centrifugal Pump Impeller of Low Specific Speed
,”
ASME J. Fluids Eng.
,
124
(
2
), pp.
356
362
.
14.
Cordier
,
O.
,
1953
, “
Ähnlichkeitsbedingungen für Strömungsmaschinen
,”
Brennst. Wärme Kraft
,
5
(
10
), pp.
337
340
.
15.
Epple
,
P.
,
Durst
,
F.
, and
Delgado
,
A.
,
2011
, “
A Theoretical Derivation of the Cordier Diagram for Turbomachines
,”
Proc. Inst. Mech. Eng., Part C
,
225
(
2
), pp.
354
368
.
16.
Kagawa
,
S.
,
Kurokawa
,
J.
,
Matsui
,
J.
, and
Choi
,
Y.-D.
,
2007
, “
Performance of Very Low Specific Speed Centrifugal Pumps With Circular Casing
,”
J. Fluid Sci. Technol.
,
2
(
1
), pp.
130
138
.
17.
Choi
,
Y.-D.
,
Nishino
,
K.
,
Kurokawa
,
J.
, and
Matsui
,
J.
,
2004
, “
PIV Measurement of Internal Flow Characteristics of Very Low Specific Speed Semi-Open Impeller
,”
Exp. Fluids
,
37
(
5
), pp.
617
630
.
18.
Choi
,
Y.-D.
,
Kurokawa
,
J.
, and
Matsui
,
J.
,
2006
, “
Performance and Internal Flow Characteristics of a Very Low Specific Speed Centrifugal Pump
,”
ASME J. Fluids Eng.
,
128
(
2
), pp.
341
349
.
19.
Cui
,
B.
,
Zhu
,
Z.
,
Zhang
,
J.
, and
Chen
,
Y.
,
2006
, “
The Flow Simulation and Experimental Study of Low-Specific-Speed High-Speed Complex Centrifugal Impellers
,”
Chin. J. Chem. Eng.
,
14
(
4
), pp.
435
441
.
20.
Fu
,
Y.
,
Yuan
,
J.
,
Yuan
,
S.
,
Pace
,
G.
,
d'Agostino
,
L.
,
Huang
,
P.
, and
Li
,
X.
,
2014
, “
Numerical and Experimental Analysis of Flow Phenomena in a Centrifugal Pump Operating Under Low Flow Rates
,”
ASME. J. Fluids Eng.
,
137
(
1
), p.
011102
.
21.
Balje
,
O. E.
,
1981
,
Turbomachines: A Guide to Design, Selection, and Theory
,
Wiley
,
New York
.
22.
Grabow
,
G.
,
2002
, “
Optimalbereiche von Fluidenergiemaschinen—Pumpen und Verdichter
,”
Forsch. Ingenieurwes.
,
67
(
3
), pp.
100
106
.
23.
Krogh
,
F. W.
,
1923
, “
Centrifugal Conveyer
,”
U.S. Patent No. 1,441,589
.
24.
Erickson
,
J. W.
, and
Grumet
,
W. H.
,
1974
, “
A New Pump for Industry—The Roto Jet
,”
ASME
Paper No. 74-Pet-31.
25.
King
,
W. L.
,
1968
, “
Centrifugal Pump
,” U.S. Patent No. 3,384,024.
26.
Erickson
,
J. W.
, and
Williams
,
C. P.
,
1974
, “
Pitot Pump With Means for Excluding Leakage From Bearings
,”
U.S. Patent No. 3,838,939
.
27.
Erickson
,
J. W.
, and
Budrys
,
V.
,
1977
, “
Pitot Pump With Turbulence Elimination
,”
U.S. Patent No. 4,045,145
.
28.
Erickson
,
J. W.
,
1981
, “
High Pressure Centrifugal Pump
,”
U.S. Patent No. 4,281,962
.
29.
Binder
,
A.
,
Emde
,
C.
,
Keller
,
C.
, and
Jaeger
,
C.
,
2013
, “
Pitot Tube Pump
,”
U.S. Patent No. 8,403,625
.
30.
Kent
,
W.
,
1992
, “
Variable Geometry Pitot Pump
,”
U.S. Patent No. 5,098,255
.
31.
Neilson
,
B.
,
2014
, “
Gear-Driven Flow-Through Pitot Tube Pump
,”
Patent No. WO2014152448A1
.
32.
Wang
,
C. L.
,
Zhao
,
C. L.
,
Zhang
,
T. F.
, and
Liu
,
D.
,
2012
, “
The Numerical Simulation of Full Flow Field of Roto-Jet Pump and Analysis of Energy Losses
,”
Adv. Mater. Res.
,
562–564
, pp.
1369
1372
.
33.
Zhu
,
F. N.
,
Liu
,
D.
,
Yang
,
X. Y.
, and
Wang
,
C. L.
,
2013
, “
Numerical Simulation of the Three-Dimensional Turbulent Flow in Roto-Jet Pump
,”
Appl. Mech. Mater.
,
341–342
, pp.
375
378
.
34.
Zang
,
W.
,
Li
,
X. C.
,
Chen
,
Y.
, and
Luo
,
Y. T.
,
2014
, “
Numerical Study of the Inside Flow Field and the Rectangle Channel Impeller of Roto-Jet Pump
,”
Appl. Mech. Mater.
,
529
, pp.
164
168
.
35.
Komaki
,
K.
,
Kanemoto
,
T.
,
Sagara
,
K.
, and
Umekage
,
T.
,
2013
, “
Effect of the Collector Tube Profile on Pitot Pump Performances
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
52
, pp. 1–6.
36.
Meyer
,
J.
,
Daróczy
,
L.
, and
Thévenin
,
D.
,
2014
, “
New Design Approach for Pitot-Tube Jet Pump
,”
ASME
Paper No. GT2014-25310.
37.
Daróczy
,
L.
,
Janiga
,
G.
, and
Thévenin
,
D.
,
2014
, “
Systematic Analysis of the Heat Exchanger Arrangement Problem Using Multi-Objective Genetic Optimization
,”
Energy
,
65
, pp.
364
373
.
38.
Bhat
,
P. S.
, and
Sullerey
,
R. K.
,
2013
, “
An Assessment of Turbulence Models for S-Duct Diffusers With Flow Control
,”
ASME
Paper No. GTINDIA2013-3566.
39.
Luo
,
J.
, and
Razinsky
,
E. H.
,
2009
, “
Analysis of Turbulent Flow in 180 Degree Turning Ducts With and Without Guide Vanes
,”
ASME J. Turbomach.
,
131
(
2
), p.
021011
.
40.
Larsson
, I
. A. S.
,
Lindmark
,
E. M.
,
Lundstrom
,
T. S.
, and
Nathan
,
G. J.
,
2011
, “
Secondary Flow in Semi-Circular Ducts
,”
ASME J. Fluids Eng.
,
133
(
10
), p.
101206
.
You do not currently have access to this content.