The integral form of the equation for x momentum is solved for the skin friction coefficient, in external thin boundary layer flow, on surfaces whose technical roughness elements' size is given. This is done by using a “roughness depression function” in the law of the wall and wake which serves as the needed velocity profile. The method uses the equivalent sand grain size concept in its calculations. Predictions are made of the friction coefficient, Cf, as a function of momentum thickness Reynolds number and also, of Cf's dependence on the ratio of momentum thickness to the size of the technical (actual) roughness elements. In addition, boundary layer thicknesses and velocity profiles on rough surfaces are calculated and, when available, comparisons are made with the experimental data from a number of sources in the literature. Also, comparisons are made with the results of another major predictive scheme which does not use the equivalent sand grain concept.

References

References
1.
Hosni
,
M. H.
,
Coleman
,
H. W.
, and
Taylor
,
R. P.
,
1993
, “
Measurement and Calculation of Fluid Dynamic Characteristics of Rough-Wall Turbulent Boundary Layer Flows
,”
ASME J. Fluid Eng.
,
115
(
3
), pp.
383
388
.
2.
Sucec
,
J.
,
2014
, “
An Integral Solution for Skin Friction in Turbulent Flow Over Aerodynamically Rough Surfaces With an Arbitrary Pressure Gradient
,”
ASME J. Fluid Eng.
,
136
(
8
), p.
081103
.
3.
Bons
,
J.
,
2005
, “
A Critical Assessment of Reynolds Analogy for Turbine Flows
,”
ASME J. Heat Transfer
,
127
(
5
), pp.
472
485
.
4.
Belnap
,
B. J.
,
van Rij
,
J. A.
, and
Ligrani
,
P. M.
,
2002
, “
A Reynolds Analogy for Real Component Surface Roughness
,”
Int. J. Heat Mass Transfer
,
45
(
15
), pp.
3089
3099
.
5.
Schlichting
,
H.
,
1960
,
Boundary Layer Theory
(Translated by J. Kestin),
4th ed.
,
McGraw-Hill
,
New York
.
6.
Dvorak
,
F. A.
,
1969
, “
Calculation of Turburlent Boundary Layers on Rough Surfaces in Pressure Gradient
,”
AIAA J.
,
7
(
9
), pp.
1752
1759
.
7.
Sigal
,
A.
, and
Danberg
,
J. E.
,
1990
, “
New Correlation of Roughness Density Effect on the Turbulent Boundary Layer
,”
AIAA J.
,
28
(
3
), pp.
554
556
.
8.
Bons
,
J. P.
,
2002
, “
St and Cf Augmentation for Real Turbine Roughness With Elevated Free Stream Turbulence
,”
ASME J. Turbomach.
,
124
(
4
), pp.
632
644
.
9.
Cebeci
,
T.
, and
Chang
,
K. C.
,
1978
, “
Calculation of Incompressible Rough Wall Boundary Layer Flows
,”
AIAA J.
,
16
(
7
), pp.
730
735
.
10.
Kays
,
W. M.
,
Crawford
,
M. E.
, and
Weigand
,
B.
,
2005
,
Convective Heat and Mass Transfer
,
4th ed.
,
McGraw-Hill
,
New York
.
11.
McClain
,
S. T.
,
Collins
,
S. P.
,
Hodge
,
B. K.
, and
Bons
,
J. P.
,
2006
, “
The Importance of the Mean Elevation in Predicting Skin Friction for Flow Over Closely Packed Surface Roughness
,”
ASME J. Fluid Eng.
,
128
(
3
), pp.
579
586
.
12.
Aupoix
,
B.
,
2015
, “
Revisiting the Discrete Element Method for Predictions of Flows Over Rough Surfaces
,”
ASME J. Fluid Eng.
,
138
(3), p.
031205
.
13.
Coleman
,
H. W.
,
Hodge
,
B. K.
, and
Taylor
,
R. P.
,
1984
, “
A Re-Evaluation of Schlichting's Surface Roughness Experiment
,”
ASME J. Fluid Eng.
,
106
(
1
), pp.
60
65
.
14.
Mills
,
A. F.
, and
Hang
,
X.
,
1983
, “
On the Skin Friction Coefficient for a Fully Rough Flat Plate
,”
ASME J. Fluid Eng.
,
105
(
3
), pp.
364
365
.
15.
White
,
F. M.
,
1991
,
Viscous Fluid Flow
,
2nd ed.
,
McGraw-Hill
,
New York
.
16.
Taylor
,
R. P.
,
Coleman
,
H. W.
, and
Hodge
,
B. K.
,
1985
, “
Prediction of Turbulent Rough Wall Skin Friction Using a Discrete Element Approach
,”
ASME J. Fluid Eng.
,
107
(
2
), pp.
251
257
.
17.
Coleman
,
H. W.
,
1976
, “
Momentum and Energy Transport in the Accelerated Fully Rough Turbulent Boundary Layer
,”
Ph.D. thesis
, Stanford University, Stanford, CA.http://adsabs.harvard.edu/abs/1976PhDT........90C
18.
Shin
,
J. H.
, and
Song
,
S. J.
,
2015
, “
Pressure Gradient Effects on Smooth and Rough-Surface Turbulent Boundary Layers—Part I: Favorable Pressure Gradient
,”
ASME J. Fluid Eng.
,
137
(1), p.
011203
.
19.
Shin
,
J. H.
, and
Song
,
S. J.
,
2015
, “
Pressure Gradient Effects on Smooth and Rough-Surface Turbulent Boundary Layers—Part II: Adverse Pressure Gradient
,”
ASME J. Fluid Eng.
,
137
(1), p.
011204
.
20.
Botros
,
K. K.
,
2016
, “
Experimental Investigation Into the Relationship Between the Roughness Height in Use With Nikuradise or Colebrook Roughness Functions and the Internal Wall Roughness Profile for Commercial Steel Pipes
,”
ASME J. Fluid Eng.
,
138
(
8
), p.
081202
.
21.
Pimenta
,
M. M.
,
Moffat
,
R. I.
, and
Kays
,
W. M.
,
1979
, “
The Structure of a Boundary Layer on a Rough Wall With Blowing and Heat Transfer
,”
ASME J. Heat Transfer
,
101
(
2
), pp.
193
197
.
22.
Sucec
,
J.
,
2009
, “
An Integral Solution for Heat Transfer in Accelerating Turbulent Boundary Layers
,”
ASME J. Heat Transfer
,
131
(11), p.
11702
.
23.
Tani
,
I.
,
1987
, “
Turbulent Boundary Layer Development Over Rough Surfaces
,”
Perspectives in Turbulence Studies
,
H. W.
Meier
and
P.
Bradshaw
, eds.,
Springer-Verlag
,
Berlin
, pp.
223
249
.
24.
Young
,
A. D.
,
1989
,
Boundary Layers
(AIAA Education Series),
AIAA
,
Washington, DC
.
25.
Cebeci
,
T.
, and
Bradshaw
,
P.
,
1984
,
Physical and Computational Aspects of Convective Heat Transfer
,
Springer-Verlag
,
New York
, p.
188
.
You do not currently have access to this content.