We perform global linear stability analysis on low-Re flow past an isolated cylinder with rounded corners. The objective of the present work is to investigate the effect of cylinder geometry (corner radius) on the stability characteristics of the flow. Our investigation sheds light on new physics that the flow can be stabilized by partially rounding the cylinder in the critical and weakly supercritical flow regimes. The flow is first stabilized and then gradually destabilized as the cylinder varies from square to circular geometry. The sensitivity analysis reveals that the variation of stability is attributed to the different spatial variation trends of the backflow velocity in the near- and far-wake regions for various cylinder geometries. The results from the stability analysis are also verified with those of the direct simulations, and very good agreement is achieved.

References

References
1.
Coutanceau
,
M.
, and
Bouard
,
R.
,
1977
, “
Experimental Determination of the Main Features of the Viscous Flow in the Wake of a Circular Cylinder in Uniform Translation—Part 1: Steady Flow
,”
J. Fluid Mech.
,
79
(
2
), pp.
231
256
.
2.
Williamson
,
C. H. K.
,
1996
, “
Vortex Dynamics in the Cylinder Wake
,”
Annu. Rev. Fluid Mech.
,
28
(
1
), pp.
477
539
.
3.
Williamson
,
C. H. K.
,
1996
, “
Mode A Secondary Instability in Wake Transition
,”
Phys. Fluids
,
8
(
6
), pp.
1680
1682
.
4.
Chatterjee
,
D.
, and
Gupta
,
S. K.
,
2014
, “
Numerical Study of the Laminar Flow Past a Rotating Square Cylinder at Low Spinning Rates
,”
ASME J. Fluids Eng.
,
137
(2), p.
021204
.
5.
Supradeepan
,
K.
, and
Roy
,
A.
,
2015
, “
Low Reynolds Number Flow Characteristics for Two Side by Side Rotating Cylinders
,”
ASME J. Fluids Eng.
,
137
(
10
), p.
101204
.
6.
Chauhan
,
M. K.
,
Dutta
,
S.
,
Gandhi
,
B. K.
, and
More
,
B. S.
,
2016
, “
Experimental Investigation of Flow Over a Transversely Oscillating Square Cylinder at Intermediate Reynolds Number
,”
ASME J. Fluids Eng.
,
138
(
5
), p.
051105
.
7.
Kumar
,
S.
,
2016
, “
Effect of Channel Inlet Blockage on the Wake Structure of a Rotationally Oscillating Cylinder
,”
ASME J. Fluids Eng.
,
138
(
12
), p.
121203
.
8.
Barkley
,
D.
,
2006
, “
Linear Analysis of the Cylinder Wake Mean Flow
,”
Europhys. Lett.
,
75
(
5
), pp.
750
756
.
9.
Giannetti
,
F.
, and
Luchini
,
P.
,
2007
, “
Structural Sensitivity of the First Instability of the Cylinder Wake
,”
J. Fluid Mech.
,
581
, pp.
167
197
.
10.
Sipp
,
D.
, and
Lebedev
,
A.
,
2007
, “
Global Stability of Base and Mean Flows: A General Approach and Its Applications to Cylinder and Open Cavity Flows
,”
J. Fluid Mech.
,
593
, pp.
333
358
.
11.
Marquet
,
O.
,
Sipp
,
D.
, and
Jacquin
,
L.
,
2008
, “
Sensitivity Analysis and Passive Control of Cylinder Flow
,”
J. Fluid Mech.
,
615
, pp.
221
252
.
12.
Verma
,
A.
, and
Mittal
,
S.
,
2011
, “
A New Unstable Mode in the Wake of a Circular Cylinder
,”
Phys. Fluids
,
23
(
12
), p.
121701
.
13.
Strykowski
,
P. J.
, and
Sreenivasan
,
K. R.
,
1990
, “
On the Formation and Suppression of Vortex ‘Shedding’ at Low Reynolds Numbers
,”
J. Fluid Mech.
,
218
, pp.
71
107
.
14.
Rashidi
,
S.
,
Bovand
,
M.
,
Esfahani
,
J. A.
,
Öztop
,
H. F.
, and
Masoodi
,
R.
,
2015
, “
Control of Wake Structure Behind a Square Cylinder by Magnetohydrodynamics
,”
ASME J. Fluids Eng.
,
137
(
6
), p.
061102
.
15.
Yoon
,
D. H.
,
Yang
,
K. S.
, and
Choi
,
C. B.
,
2010
, “
Flow Past a Square Cylinder With an Angle of Incidence
,”
Phys. Fluids
,
22
(
4
), p.
043603
.
16.
Sohankar
,
A.
,
Norberg
,
C.
, and
Davidson
,
L.
,
1999
, “
Simulation of Three-Dimensional Flow Around a Square Cylinder at Moderate Reynolds Numbers
,”
Phys. Fluids
,
11
(
2
), pp.
288
306
.
17.
Hu
,
J. C.
,
Zhou
,
Y.
, and
Dalton
,
C.
,
2006
, “
Effects of the Corner Radius on the Near Wake of a Square Prism
,”
Exp. Fluids
,
40
(
1
), pp.
106
118
.
18.
Hu
,
J. C.
, and
Zhou
,
Y.
,
2009
, “
Aerodynamic Characteristics of Asymmetric Bluff Bodies
,”
ASME J. Fluid Eng.
,
131
(
1
), p.
011206
.
19.
Zhang
,
W.
, and
Samtaney
,
R.
,
2016
, “
Low-Re Flow Past an Isolated Cylinder With Rounded Corners
,”
Comput. Fluids
,
136
, pp.
384
401
.
20.
Tamura
,
T.
,
Miyagi
,
T.
, and
Kitagishi
,
T.
,
1998
, “
Numerical Prediction of Unsteady Pressures on a Square Cylinder With Various Corner Shapes
,”
J. Wind Eng. Ind. Aerodyn.
,
74–76
, pp.
531
542
.
21.
Tamura
,
T.
, and
Miyagi
,
T.
,
1999
, “
The Effect of Turbulence on Aerodynamic Forces on a Square Cylinder With Various Corner Shapes
,”
J. Wind Eng. Ind. Aerodyn.
,
83
(1–3), pp.
135
145
.
22.
Carassale
,
L.
,
Freda
,
A.
, and
Marre-Brunenghi
,
M.
,
2014
, “
Experimental Investigation on the Aerodynamic Behavior of Square Cylinders With Rounded Corners
,”
J. Fluid Struct.
,
44
, pp.
195
204
.
23.
Ohmichi
,
Y.
, and
Suzuki
,
K.
,
2016
, “
Assessment of Global Linear Stability Analysis Using a Time Stepping Approach for Compressible Flows
,”
Int. J. Numer. Methods Fluids
,
80
(
10
), pp.
614
627
.
24.
Zhang
,
W.
,
Cheng
,
W.
,
Gao
,
W.
,
Qamar
,
A.
, and
Samtaney
,
R.
,
2015
, “
Geometrical Effects on the Airfoil Flow Separation and Transition
,”
Comput. Fluids
,
116
, pp.
60
73
.
25.
Zhang
,
W.
, and
Samtaney
,
R.
,
2015
, “
A Direct Numerical Simulation Investigation of the Synthetic Jet Frequency Effects on Separation Control of Low-Re Flow Past an Airfoil
,”
Phys. Fluids
,
27
(
5
), p.
055101
.
26.
Zhang
,
W.
, and
Samtaney
,
R.
,
2016
, “
Assessment of Spanwise Domain Size Effect on the Transitional Flow Past an Airfoil
,”
Comput. Fluids
,
124
, pp.
39
53
.
27.
Zang
,
Y.
,
Street
,
R. L.
, and
Koseff
,
J. R.
,
1994
, “
A Non-Staggered Grid, Fractional Step Method for Time-Dependent Incompressible Navier-Stokes Equations in Curvilinear Coordinates
,”
J. Comput. Phys.
,
114
(
1
), pp.
18
33
.
28.
Åkervik
,
E.
,
Brandt
,
L.
,
Henningson
,
D. S.
,
Hœpffner
,
J.
,
Marxen
,
O.
, and
Schlatter
,
P.
,
2006
, “
Steady Solutions of the Navier-Stokes Equations by Selective Frequency Damping
,”
Phys. Fluids
,
18
(
6
), p.
068102
.
29.
Zhang
,
W.
, and
Samtaney
,
R.
,
2016
, “
Numerical Simulation and Global Linear Stability Analysis of Low-Re Flow Past a Heated Circular Cylinder
,”
Int. J. Heat Mass Transfer
,
98
, pp.
584
595
.
30.
Zhang
,
W.
, and
Samtaney
,
R.
,
2016
, “
BiGlobal Linear Stability Analysis on Low-Re Flow Past an Airfoil at High Angle of Attack
,”
Phys. Fluids
,
28
(
4
), p.
044105
.
31.
Sipp
,
D.
,
Marquet
,
O.
,
Meliga
,
P.
, and
Barbagallo
,
A.
,
2010
, “
Dynamics and Control of Global Instabilities in Open-Flows: A Linearized Approach
,”
ASME Appl. Mech. Rev.
,
63
(
3
), p.
030801
.
32.
Kumar
,
B.
, and
Mittal
,
S.
,
2006
, “
Prediction of the Critical Reynolds Number for Flow Past a Circular Cylinder
,”
Comput. Methods Appl. Mech. Eng.
,
195
(44–47), pp.
6046
6058
.
33.
Norberg
,
C.
,
1994
, “
An Experimental Investigation of the Flow Around a Circular Cylinder: Influence of Aspect Ratio
,”
J. Fluid Mech.
,
258
, pp.
287
316
.
34.
Zielinska
,
B. J. A.
,
Goujon-Durand
,
S.
,
Dušek
,
J.
, and
Wesfreid
,
J. E.
,
1997
, “
Strongly Nonlinear Effect in Unstable Wakes
,”
Phys. Rev. Lett.
,
79
(
20
), pp.
3893
3896
.
You do not currently have access to this content.