Foam structures are a class of modern microporous media that possesses high thermal conductivity, large accessible specific surface area, and high porosities. Nowadays, industrial applications, such as filtration, heat exchange and chemical reaction, etc., utilize porous media such as open-cell foams. Knowledge of pressure drop induced by these foam matrices is essential for successful design and operation of high-performance industrial systems. The homogenized pressure drop data in the literature are widely dispersed (up two orders of magnitude) despite numerous researches has been conducted since two decades. Most of the empirical pressure drop correlations were derived using Ergun-like approach. In this view, a careful evaluation of empirical correlations as well as the relationship of intrinsic flow law characteristics (permeability and inertia coefficient) with morphological parameters is imperative. This paper presents the start-of-the-art of various pressure drop correlations as well as highlights the ambiguities and inconsistencies in various definitions of several key parameters. The applicability of the empirical correlations presented in the literature was examined by comparing them against numerically calculated pressure drop data of open-cell foams (metal and ceramic) for the porosities ranging from 0.60 up to 0.95. A comprehensive study has been conducted to identify the reasons of dispersed pressure drop data in the literature. Although substantial progress has been made in the field of fluid flow in open-cell foams, it is yet difficult to predict pressure drop data from a given set of morphological parameters.

References

References
1.
Dukhan
,
N.
,
2012
,
Metal Foam: Fundamentals and Applications
,
DESTech
,
Lancaster, PA
.
2.
Garrido
,
G. I.
,
Patcas
,
F. C.
,
Lang
,
S.
, and
Kraushaar-Czarnetzki
,
B.
,
2008
, “
Mass Transfer and Pressure Drop in Ceramic Foams: A Description of Different Pore Sizes and Porosities
,”
Chem. Eng. Sci.
,
63
(
21
), pp.
5202
5217
.
3.
Dietrich
,
B.
,
Schabel
,
W.
,
Kind
,
M.
, and
Martin
,
H.
,
2009
, “
Pressure Drop Measurements of Ceramic Sponges-Determining the Hydraulic Diameter
,”
Chem. Eng. Sci.
,
64
(
16
), pp.
3633
3640
.
4.
Inayat
,
A.
,
Schwerdtfeger
,
J.
,
Freund
,
H.
,
Korner
,
C.
,
Singer
,
R. F.
, and
Schwieger
,
W.
,
2011
, “
Periodic Open-Cell Foams: Pressure Drop Measurements and Modeling of an Ideal Tetrakaidecahedra Packing
,”
Chem. Eng. Sci.
,
66
(
12
), pp.
2758
2763
.
5.
Dietrich
,
B.
,
2012
, “
Pressure Drop Correlation for Ceramic and Metal Sponges
,”
Chem. Eng. Sci.
,
74
, pp.
192
199
.
6.
Gibson
,
L. J.
, and
Ashby
,
M. F.
,
1997
,
Cellular Solids: Structure and Properties
,
2nd ed.
,
Cambridge University Press
,
Cambridge, UK
.
7.
Banhart
,
J.
,
2001
, “
Manufacture, Characterization and Application of Cellular Metals and Metal Foams
,”
Prog. Mater. Sci.
,
46
(
6
), pp.
559
632
.
8.
Tadrist
,
L.
,
Miscevic
,
M.
,
Rahli
,
O.
, and
Topin
,
F.
,
2004
, “
About the Use of Fibrous Materials in Compact Heat Exchangers
,”
Exp. Therm. Fluid Sci.
,
28
(
2–3
), pp.
193
199
.
9.
Dukhan
,
N.
, and
Minjeur
,
C.
,
2011
, “
A Two-Permeability Approach for Assessing Flow Properties in Metal Foam
,”
J. Porous Mater.
,
18
(
4
), pp.
417
424
.
10.
De Jaeger
,
P.
,
T'Joen
,
C.
,
Huisseune
,
H.
,
Ameel
,
B.
,
De Schampheleire
,
S.
, and
De Paepe
,
M.
,
2013
, “
Influence of Geometrical Parameters of Open-Cell Aluminum Foam on Thermohydraulic Performance
,”
Heat Transfer Eng.
,
34
(
14
), pp.
1202
1215
.
11.
Kumar
,
P.
, and
Topin
,
F.
,
2014
, “
Micro-Structural Impact of Different Strut Shapes and Porosity on Hydraulic Properties of Kelvin Like Metal Foams
,”
Transp. Porous Media
,
105
(
1
), pp.
57
81
.
12.
Kumar
,
P.
, and
Topin
,
F.
,
2014
, “
Investigation of Fluid Flow Properties in Open-Cell Foams: Darcy and Weak Inertia Regimes
,”
Chem. Eng. Sci.
,
116
(
6
), pp.
793
805
.
13.
Kumar
,
P.
, and
Topin
,
F.
,
2014
, “
The Geometric and Thermo-Hydraulic Characterization of Ceramic Foams: An Analytical Approach
,”
Acta Mater.
,
75
, pp.
273
286
.
14.
Mahjoob
,
S.
, and
Vafai
,
K.
,
2008
, “
A Synthesis of Fluid and Thermal Transport Models for Metal Foam Heat Exchangers
,”
Int. J. Heat Mass Transfer
,
51
(
15–16
), pp.
3701
3711
.
15.
Boomsma
,
K.
, and
Poulikakos
,
D.
,
2002
, “
The Effects of Compression and Pore Size Variations on the Liquid Flow Characteristics in Metal Foams
,”
ASME J. Fluids Eng.
,
124
(
1
), pp.
263
272
.
16.
Bonnet
,
J. P.
,
Topin
,
F.
, and
Tadrist
,
L.
,
2008
, “
Flow Laws in Metal Foams: Compressibility and Pore Size Effects
,”
Transp. Porous Media
,
73
(
2
), pp.
233
254
.
17.
Mei
,
C. C.
, and
Auriault
,
J. L.
,
1991
, “
The Effect of Weak Inertia on Flow Through a Porous Medium
,”
J. Fluid Mech.
,
222
, pp.
647
663
.
18.
Wodie
,
J. C.
, and
Levy
,
T.
,
1991
, “
Correction non linéaire de la loi de Darcy
,”
C. R. Acad. Sci.
,
312
(
2
), pp.
157
161
.
19.
Ergun
,
S.
, and
Orning
,
A. A.
,
1949
, “
Fluid Flow Through Randomly Packed Columns and Fluidized Beds
,”
Ind. Eng. Chem.
,
41
(
6
), pp.
1179
1184
.
20.
Lacroix
,
M.
,
Nguyen
,
P.
,
Schweich
,
D.
,
Huu
,
C. P.
,
Savin-Poncet
,
S.
, and
Edouard
,
D.
,
2007
, “
Pressure Drop Measurements and Modeling on SiC Foams
,”
Chem. Eng. Sci.
,
62
(
12
), pp.
3259
3267
.
21.
Lu
,
T. J.
,
Stone
,
H. A.
, and
Ashby
,
M. F.
,
1998
, “
Heat Transfer in Open-Cell Metal Foams
,”
Acta Mater.
,
46
(
10
), pp.
3619
3635
.
22.
Innocentini
,
M. D. M.
,
Salvini
,
V. R.
,
Coury
,
J. R.
, and
Pandolfelli
,
V. C.
,
1999
, “
Prediction of Ceramic Foams Permeability Using Ergun's Equation
,”
J. Mater. Res.
,
4
(
4
), pp.
283
289
.
23.
Richardson
,
J. T.
,
Peng
,
Y.
, and
Remue
,
D.
,
2000
, “
Properties of Ceramic Foam Catalyst Supports: Pressure Drop
,”
Appl. Catal. A
,
204
(
1
), pp.
19
32
.
24.
Fourie
,
J. G.
, and
Du Plessis
,
P.
,
2002
, “
Pressure Drop Modelling in Cellular Metallic Foams
,”
Chem. Eng. Sci.
,
57
(
14
), pp.
2781
2789
.
25.
Bhattacharya
,
A.
,
Calmidi
,
V. V.
, and
Mahajan
,
R. L.
,
2002
, “
Thermophysical Properties of High Porosity Metal Foams
,”
Int. J. Heat Mass Transfer
,
45
(
5
), pp.
1017
1031
.
26.
Moreira
,
E. A.
,
Innocentini
,
M. D. M.
, and
Coury
,
J. R.
,
2004
, “
Permeability of Ceramic Foams to Compressible and Incompressible Flow
,”
J. Eur. Ceram. Soc.
,
24
(
10–11
), pp.
3209
3218
.
27.
Moreira
,
E. A.
, and
Coury
,
J. R.
,
2004
, “
The Influence of Structural Parameters on the Permeability of Ceramic Foams
,”
Braz. J. Chem. Eng.
,
21
(
1
), pp.
23
33
.
28.
Khayargoli
,
P.
,
Loya
,
V.
,
Lefebvre
,
L. P.
, and
Medraj
,
M.
,
2004
, “
The Impact of Microstructure on the Permeability of Metal Foams
,” The Canadian Society for Mechanical Engineering, Ottawa, ON, Canada.
29.
Giani
,
L.
,
Groppi
,
G.
, and
Tronconi
,
E.
,
2005
, “
Mass-Transfer Characterization of Metallic Foams as Supports for Structured Catalysts
,”
Ind. Eng. Chem. Res.
,
44
(
14
), pp.
4993
5002
.
30.
Liu
,
J. F.
,
Wu
,
W. T.
,
Chiu
,
W. C.
, and
Hsieh
,
H.
,
2006
, “
Measurement and Correlation of Friction Characteristic of Flow Through Foam Matrixes
,”
Exp. Therm. Fluid Sci.
,
30
(
4
), pp.
329
336
.
31.
Topin
,
F.
,
Bonnet
,
J. P.
,
Madani
,
B.
, and
Tadrist
,
L.
,
2006
, “
Experimental Analysis of Multiphase Flow in Metallic Foam: Convective Boiling, Flow Laws and Heat Transfer
,”
Adv. Mater. Eng.
,
8
(
9
), pp.
890
899
.
32.
Dukhan
,
N.
,
2006
, “
Correlations for the Pressure Drop for Flow Through Metal Foam
,”
Exp. Fluids
,
41
(
4
), pp.
665
672
.
33.
Huu
,
T. T.
,
Lacroix
,
M.
,
Huu
,
C. P.
,
Schweich
,
D.
, and
Edouard
,
D.
,
2009
, “
Towards a More Realistic Modeling of Solid Foam: Use of the Pentagonal Dodecahedron Geometry
,”
Chem. Eng. Sci.
,
64
(
24
), pp.
5131
5142
.
34.
Brun
,
E.
,
2009
, “
3D Imaging of the Structures to Study the Transport Mechanisms in Cellular Medium
,” Ph.D. thesis, University of Aix-Marseille, Marseille, France.
35.
Haussener
,
S.
,
Coray
,
P.
,
Lipinski
,
W.
,
Wyss
,
P.
, and
Steinfeld
,
A.
,
2010
, “
Tomography-Based Heat and Mass Transfer Characterization of Reticulate Porous Ceramics for High-Temperature Processing
,”
ASME J. Heat Transfer
,
132
(
2
), pp.
23305
23309
.
36.
Lawrence
,
H.
,
Zhang
,
L. C.
,
Dean
,
T.
, and
Edmond
,
L.
,
2010
, “
Measurement of Tortuosity in Aluminum Foams Using Airborne Ultrasound
,”
Ultrasonics
,
50
(
1
), pp.
1
5
.
37.
Kumar
,
P.
,
Topin
,
F.
, and
Vicente
,
J.
,
2014
, “
Determination of Effective Thermal Conductivity From Geometrical Properties: Application to Open-Cell Foams
,”
Int. J. Therm. Sci.
,
81
, pp.
13
28
.
38.
Bastawros
,
A. F.
,
Evans
,
A. G.
, and
Stone
,
H. A.
,
1998
, “
Evaluation of Cellular Metal Heat Transfer Media
,” Harvard University, Cambridge, MA, Report No. MECH 325.
39.
Lage
,
J. L.
,
Antohe
,
B. V.
, and
Nield
,
D. A.
,
1997
, “
Two Types of Nonlinear Pressure-Drop Versus Flow-Rate Relation Observed for Saturated Porous Media
,”
ASME J. Fluid Eng.
,
119
(
3
), pp.
700
706
.
40.
Bastawros
,
A. F.
,
1998
, “
Effectiveness of Open-Cell Metallic Foams for High Power Electronic Cooling
,”
Symposium on the Thermal Management of Electronics
, Anaheim, CA.
41.
Hwang
,
J. J.
,
Hwang
,
G. J.
,
Yeh
,
R. H.
, and
Chao
,
C. H.
,
2002
, “
Measurement of Interstitial Convective Heat Transfer and Frictional Drag for Flow Across Metal Foams
,”
ASME J. Heat Transfer
,
124
(
1
), pp.
120
129
.
42.
Seguin
,
D.
,
Montillet
,
A.
, and
Comiti
,
J.
,
1998
, “
Experimental Characterization of Flow Regimes in Various Porous Media—I: Limit of Laminar Flow Regime
,”
Chem. Eng. Sci.
,
53
(
21
), pp.
3751
3761
.
43.
Paek
,
J. W.
,
Kang
,
B. H.
,
Kim
,
S. Y.
, and
Hyun
,
J. M.
,
2000
, “
Effective Thermal Conductivity and Permeability of Aluminium Foam Materials
,”
Int. J. Thermophys.
,
21
(
2
), pp.
453
464
.
44.
Kim
,
S. Y.
,
Paek
,
J. W.
, and
Kang
,
B. H.
,
2000
, “
Flow and Heat Transfer Correlations for Porous Fin in a Plate-Fin Heat Exchanger
,”
ASME J. Heat Transfer
,
122
(
3
), pp.
572
578
.
45.
Crosnier
,
S.
,
Rivam
,
R.
,
Bador
,
B.
, and
Blet
,
V.
,
2003
, “
Modeling of Gas Flow Through Metallic Foams
,”
First European Hydrogen Energy Conference
(EHEC), Grenobe, France, Sept. 2–5.
46.
Dukhan
,
N.
, and
Patel
,
P.
,
2008
, “
Equivalent Particle Diameter and Length Scale for Pressure Drop in Porous Metals
,”
Exp. Therm. Fluid Sci.
,
32
(
5
), pp.
1059
1067
.
47.
Mancin
,
S.
,
Zilio
,
C.
,
Cavallini
,
A.
, and
Rossetto
,
L.
,
2010
, “
Pressure Drop During Air Flow in Aluminum Foams
,”
Int. J. Heat Mass Transfer
,
53
(
15–16
), pp.
3121
3130
.
48.
Madani
,
B.
,
Topin
,
F.
,
Tadrist
,
L.
, and
Rigollet
,
F.
,
2007
, “
Flow Laws in Metallic Foams: Experimental Determination of Inertial and Viscous Contribution
,”
J. Porous Media
,
10
(
1
), pp.
51
70
.
49.
Boomsma
,
K.
,
Poulikakos
,
D.
, and
Ventikos
,
Y.
,
2003
, “
Simulations of Flow Through Open-Cell Metal Foams Using an Idealized Periodic Cell Structure
,”
Int. J. Heat Fluid Flow
,
24
(
6
), pp.
825
834
.
50.
Hugo
,
J. M.
, and
Topin
,
F.
,
2012
, “
Metal Foams Design for Heat Exchangers: Structure and Effectives Transport Properties
,”
Heat and Mass Transfer in Porous Media
(Advanced Structured Materials), Vol.
13
, J.M.P.Q. Delgado, ed., Springer, Berlin, pp.
219
244
.
51.
Firdaous
,
M.
,
Guermond
,
J. L.
, and
Le Quere
,
P.
,
1997
, “
Nonlinear Corrections to Darcy's Law at Low Reynolds Numbers
,”
J. Fluid Mech.
,
343
, pp.
331
350
.
52.
Beugre
,
D.
,
Calvo
,
S.
,
Dethier
,
G.
,
Crine
,
M.
,
Toye
,
D.
, and
Marchot
,
P.
,
2010
, “
Lattice Boltzmann 3D Flow Simulations on a Metallic Foam
,”
J. Comp. Appl. Math.
,
234
(
7
), pp.
2128
2134
.
53.
Vicente
,
J.
,
Topin
,
F.
, and
Daurelle
,
J. V.
,
2006
, “
Open-Celled Material Structural Properties Measurement: From Morphology to Transport Properties
,”
Mater. Trans.
,
47
(
9
), pp.
1
8
.http://doi.org/10.2320/matertrans.47.2195
54.
Edouard
,
D.
,
Lacroix
,
M.
,
Huu
,
C. P.
, and
Luck
,
F.
,
2008
, “
Pressure Drop Modelling on Solid Foam: State-of-the Art Correlation
,”
Chem. Eng. J.
,
144
(
2
), pp.
299
311
.
55.
Xu
,
W.
,
Zhang
,
H.
,
Yang
,
Z.
, and
Zhang
,
J.
,
2008
, “
Numerical Investigation on the Flow Characteristics and Permeability of Three-Dimensional Reticulated Foam Materials
,”
Chem. Eng. J.
,
140
(
1–3
), pp.
562
569
.
56.
Dybbs
,
A.
, and
Edwards
,
R. V.
,
1984
, “
A New Look at Porous Media Fluid Mechanics—Darcy to Turbulent
,”
Fundamentals of Transport Phenomena in Porous Media
(NATO ASI Series), Vol.
82
,
J.
Bear
, and
M. Y.
Corapciolu
, eds.,
Martinus Nijhoff Publishers
,
Leiden, The Netherlands
, pp.
199
256
.
57.
Lage
,
J. L.
, and
Antohe
,
B. V.
,
2000
, “
Darcy's Experiments and the Deviation to Nonlinear Flow Regime
,”
ASME J. Fluids Eng.
,
122
(
3
), pp.
619
625
.
58.
Du Plessis
,
P.
,
Montillet
,
A.
,
Comiti
,
J.
, and
Legrand
,
J.
,
1994
, “
Pressure Drop Prediction for Flow Through High Porosity Metallic Foams
,”
Chem. Eng. Sci.
,
49
(
21
), pp.
3545
3553
.
59.
Twigg
,
M. V.
, and
Richardson
,
J. T.
,
2002
, “
Theory and Applications of Ceramic Foam Catalysts
,”
J. Chem. Eng. Res. Des.
,
80
(
2
), pp.
183
189
.
You do not currently have access to this content.