The phenomenon of relaminarization is observed in many flow situations, including that of an initially turbulent boundary layer (TBL) subjected to strong favorable pressure gradients (FPG). As several experiments on relaminarizing flows have indicated, TBLs subjected to high pressure gradients do not follow the universal log-law, and (for this and other reasons) the prediction of boundary layer (BL) parameters using current turbulence models has not been successful. However, a quasi-laminar theory (QLT; proposed in 1973), based on a two-layer model to explain the later stages of relaminarization, showed good agreement with the experimental data available at that time. These data were mostly at relatively low Re and hence left the precise role of viscosity undefined. QLT, therefore, could not be assessed at high-Re. Recent experiments, however, have provided more comprehensive data and extended the Reynolds number range to nearly 5 × 103 in momentum thickness. These data provide a basis for a reassessment of QLT, which is revisited here with an improved predictive code. It is demonstrated that even for these high-Re flows subjected to high acceleration, QLT provides good agreement with experimental results, and therefore, has the potential to substitute for Reynolds-averaged Navier–Stokes (RANS) simulations in high FPG regions.

References

References
1.
Narasimha
,
R.
, and
Sreenivasan
,
K. R.
,
1973
, “
Relaminarization in Highly Accelerated Turbulent Boundary Layers
,”
J. Fluid Mech.
,
61
(
3
), pp.
417
447
.
2.
Wilson
,
D.
, and
Pope
,
J.
,
1954
, “
Convective Heat Transfer to Gas Turbine Blade Surfaces
,”
Proc. Inst. Mech. Eng.
,
168
(
1
), pp.
861
876
.
3.
Jagannathan
,
S.
,
Schwänen
,
M.
, and
Duggleby
,
A.
,
2012
, “
Low Pressure Turbine Relaminarization Bubble Characterization Using Massively-Parallel Large Eddy Simulations
,”
ASME J. Fluids Eng.
,
134
(
2
), p.
021102
.
4.
Ranjan
,
R.
,
Deshpande
,
S.
, and
Narasimha
,
R.
,
2014
, “
Direct Numerical Simulation of Compressible Flow Past a Low Pressure Turbine Blade at High Incidence
,”
ASME
Paper No. FEDSM2014-21773.
5.
Halstead
,
D.
,
Okiishi
,
T.
, and
Wisler
,
D.
,
2007
, “
Boundary Layer Development on a Turbine Blade in a Linear Cascade
,”
Minnowbrook I: 1993 Workshop on End-Stage Boundary Layer Transition
,
J. E.
LaGraff
, ed., Report No. NASA/CP-2007-214667.
6.
van Dam
,
C.
,
Vijgen
,
P.
,
Yip
,
L.
, and
Potter
,
R.
,
1993
, “
Leading-Edge Transition and Relaminarization Phenomena on a Subsonic High-Lift System
,”
AIAA
Paper No. 93-3140.https://ntrs.nasa.gov/search.jsp?R=19930061157
7.
Mukund
,
R.
,
Narasimha
,
R.
,
Viswanath
,
P.
, and
Crouch
,
J.
,
2012
, “
Multiple Laminar-Turbulent Transition Cycles Around a Swept Leading Edge
,”
Exp. Fluids
,
53
(
6
), pp.
1915
1927
.
8.
Senoo
,
Y.
,
1956
, “
Boundary Layer on the End Wall of a Turbine Nozzle Cascade
,” MIT Gas Turbine Laboratory, Massachusetts Institute of Technology, Cambridge, MA, Technical Report No. 35.
9.
Sternberg
,
J.
,
1954
, “
The Transition From a Turbulent to a Laminar Boundary Layer
,” Army Ballistic Research Lab, Aberdeen Proving Ground, MD, Technical Report No. BRL-906.
10.
Narasimha
,
R.
, and
Viswanath
,
P.
,
1975
, “
Reverse Transition at an Expansion Corner in Supersonic Flow
,”
AIAA J.
,
13
(
5
), pp.
693
695
.
11.
Narasimha
,
R.
, and
Sreenivasan
,
K. R.
,
1979
, “
Relaminarization of Fluid Flows
,”
Adv. Appl. Mech.
,
19
, pp.
221
309
.
12.
Narasimha
,
R.
,
1983
, “
Relaminarization—Magnetohydrodynamic and Otherwise
,”
Prog. Astronaut. Aeronaut.
,
84
, pp.
30
52
.
13.
Warnack
,
D.
, and
Fernholz
,
H.
,
1998
, “
The Effects of a Favourable Pressure Gradient and of the Reynolds Number on an Incompressible Axisymmetric Turbulent Boundary Layer. Part 2. The Boundary Layer With Relaminarization
,”
J. Fluid Mech.
,
359
, pp.
357
381
.
14.
Dhawan
,
S.
, and
Narasimha
,
R.
,
1958
, “
Some Properties of Boundary Layer Flow During the Transition From Laminar to Turbulent Motion
,”
J. Fluid Mech.
,
3
(
4
), pp.
418
436
.
15.
Launder
,
B. E.
,
1964
, “
Laminarization of the Turbulent Boundary Layer by Acceleration
,” Massachusetts Institute of Technology, Cambridge, MA, Technical Report No. 77.
16.
Kline
,
S.
,
Reynolds
,
W.
,
Schraub
,
F.
, and
Runstadler
,
P.
,
1967
, “
The Structure of Turbulent Boundary Layers
,”
J. Fluid Mech.
,
30
(
4
), pp.
741
773
.
17.
Blackwelder
,
R. F.
, and
Kovasznay
,
L. S.
,
1972
, “
Large-Scale Motion of a Turbulent Boundary Layer During Relaminarization
,”
J. Fluid Mech.
,
53
(
1
), pp.
61
83
.
18.
Patel
,
V.
,
1965
, “
Calibration of the Preston Tube and Limitations on Its Use in Pressure Gradients
,”
J. Fluid Mech.
,
23
(
1
), pp.
185
208
.
19.
Patel
,
V.
, and
Head
,
M.
,
1968
, “
Reversion of Turbulent to Laminar Flow
,”
J. Fluid Mech.
,
34
(
2
), pp.
371
392
.
20.
Cal
,
R. B.
, and
Castillo
,
L.
,
2008
, “
Similarity Analysis of Favorable Pressure Gradient Turbulent Boundary Layers With Eventual Quasilaminarization
,”
Phys. Fluids
,
20
(
10
), p.
105106
.
21.
Badri Narayanan
,
M.
, and
Ramjee
,
V.
,
1969
, “
On the Criteria for Reverse Transition in a Two-Dimensional Boundary Layer Flow
,”
J. Fluid Mech.
,
35
(
2
), pp.
225
241
.
22.
Bourassa
,
C.
, and
Thomas
,
F.
,
2009
, “
An Experimental Investigation of a Highly Accelerated Turbulent Boundary Layer
,”
J. Fluid Mech.
,
634
, pp.
359
404
.
23.
Narasimha
,
R.
, and
Prabhu
,
A.
,
1972
, “
Equilibrium and Relaxation in Turbulent Wakes
,”
J. Fluid Mech.
,
54
(
1
), pp.
1
17
.
24.
Sreenivasan
,
K. R.
,
1982
, “
Laminarescent, Relaminarizing and Retransitional Flows
,”
Acta Mech.
,
44
(
1–2
), pp.
1
48
.
25.
Araya
,
G.
,
Castillo
,
L.
, and
Hussain
,
F.
,
2015
, “
The Log Behaviour of the Reynolds Shear Stress in Accelerating Turbulent Boundary Layers
,”
J. Fluid Mech.
,
775
, pp.
189
200
.
26.
Escudier
,
M.
,
Abdel-Hameed
,
A.
,
Johnson
,
M.
, and
Sutcliffe
,
C.
,
1998
, “
Laminarisation and Re-Transition of a Turbulent Boundary Layer Subjected to Favourable Pressure Gradient
,”
Exp. Fluids
,
25
(
5–6
), pp.
491
502
.
27.
Ichimiya
,
M.
,
Nakamura
,
I.
, and
Yamashita
,
S.
,
1998
, “
Properties of a Relaminarizing Turbulent Boundary Layer Under a Favorable Pressure Gradient
,”
Exp. Therm. Fluid Sci.
,
17
(
1
), pp.
37
48
.
28.
Nagib
,
H. M.
, and
Chauhan
,
K. A.
,
2008
, “
Variations of von Kármán Coefficient in Canonical Flows
,”
Phys. Fluids
,
20
(
10
), p.
101518
.
29.
Monkewitz
,
P. A.
,
2017
, “
Revisiting the Quest for a Universal Log-Law and the Role of Pressure Gradient in ‘Canonical’ Wall-Bounded Turbulent Flows
,” arXiv Preprint
arXiv:1702.03661
.https://arxiv.org/abs/1702.03661
30.
Piomelli
,
U.
, and
Yuan
,
J.
,
2013
, “
Numerical Simulations of Spatially Developing, Accelerating Boundary Layers
,”
Phys. Fluids
,
25
(
10
), p.
101304
.
31.
Patwardhan
,
S. S.
,
2014
, “
Effect of Favourable Pressure Gradient on Turbulence in Boundary Layers
,” Ph.D. thesis, Indian Institute of Science, Bangalore, India.
32.
Spalart
,
P. R.
,
2000
, “
Strategies for Turbulence Modelling and Simulations
,”
Int. J. Heat Fluid Flow
,
21
(
3
), pp.
252
263
.
33.
Spalart
,
P. R.
,
2015
, “
Philosophies and Fallacies in Turbulence Modeling
,”
Prog. Aerosp. Sci.
,
74
, pp.
1
15
.
34.
Launder
,
B. E.
, and
Jones
,
W. P.
,
1969
, “
On the Prediction of Laminarisation
,” HM Stationery Office, London, Report No.
ARC CP 1036
.http://naca.central.cranfield.ac.uk/reports/arc/cp/1036.pdf
35.
Oriji
,
U. R.
,
Karimisani
,
S.
, and
Tucker
,
P. G.
,
2014
, “
RANS Modeling of Accelerating Boundary Layers
,”
ASME J. Fluids Eng.
,
137
(
1
), p.
011202
.
36.
Jones
,
W.
, and
Launder
,
B.
,
1972
, “
The Prediction of Laminarization With a Two-Equation Model of Turbulence
,”
Int. J. Heat Mass Transfer
,
15
(
2
), pp.
301
314
.
37.
Kreskovsky
,
J.
,
Shamroth
,
S.
, and
McDonald
,
H.
,
1975
, “
Application of a General Boundary Layer Analysis to Turbulent Boundary Layers Subjected to Strong Favorable Pressure Gradients
,”
ASME J. Fluids Eng.
,
97
(
2
), pp.
217
224
.
38.
Menter
,
F. R.
,
Smirnov
,
P. E.
,
Liu
,
T.
, and
Avancha
,
R.
,
2015
, “
A One-Equation Local Correlation-Based Transition Model
,”
Flow, Turbul. Combust.
,
95
(
4
), pp.
583
619
.
39.
Cebeci
,
T.
, and
Smith
,
A.
,
1968
, “
A Finite-Difference Solution of the Incompressible Turbulent Boundary-Layer Equations by an Eddy-Viscosity Concept
,” Douglas Aircraft Company, Long Beach, CA.
40.
Clauser
,
F. H.
,
1956
, “
The Turbulent Boundary Layer
,”
Adv. Appl. Mech.
,
4
, pp.
1
51
.
41.
Spence
,
D.
,
1956
, “
The Development of Turbulent Boundary Layers
,”
J. Aeronaut. Sci.
,
23
(
1
), pp.
3
15
.
42.
Head
,
M.
,
1960
, “
Entrainment in the Turbulent Boundary Layer
,” HM Stationery Office, London, Report No. ARC-RM/315.
43.
Moses
,
H. L.
,
1968
, “
A Strip-Integral Method for Predicting the Behavior of Turbulent Boundary Layers
,”
AFOSR-IFP-Stanford Conference on Computation of Turbulent Boundary Layers
, Stanford, CA, Aug. 18–25, pp. 76–82.
44.
Rumsey
,
C. L.
, and
Spalart
,
P. R.
,
2009
, “
Turbulence Model Behavior in Low Reynolds Number Regions of Aerodynamic Flowfields
,”
AIAA J.
,
47
(
4
), pp.
982
993
.
45.
Sreenivasan
,
K. R.
, and
Narasimha
,
R.
,
1974
, “
Rapid Distortion of Shear Bangalore, India, Flows
,”
Aeronautical Society of India Silver Jubilee Technical Conference
, Bangalore, India, pp.
2.11
2.14
.
46.
Araya
,
G.
,
Castillo
,
L.
, and
Hussain
,
F.
,
2016
, “
DNS of Turbulent Boundary Layers in the Quasi-Laminarization Process
,”
Progress in Wall Turbulence 2
,
Springer
, Cham, Switzerland, pp.
63
71
.
47.
Schetz
,
J. A.
,
1993
,
Boundary Layer Analysis
,
Prentice Hall
,
Upper Saddle River, NJ
.
48.
Wazzan
,
A.
,
Okamura
,
T.
, and
Smith
,
A.
,
1968
, “
Spatial and Temporal Stability Charts for the Falkner–Skan Boundary-Layer Profiles
,” Defense Technical Information Center, Ft. Belvoir, VA, Report No.
DAC-67086
.http://www.dtic.mil/dtic/tr/fulltext/u2/712198.pdf
49.
Sreenivasan
,
K. R.
,
1974
, “
Notes on the Experimental Data on Reverting Boundary Layers
,” Department of Aerospace Engineering, Indian Institute of Science, Bangalore, India, Report No. 72 FM2.
50.
Reichardt
,
H.
,
1951
, “
Complete Description of Turbulent Velocity Profiles in Smooth Ducts
,”
ZAMM
,
31
(
7
), pp.
208
219
.
You do not currently have access to this content.