This paper concerns the study of the influence of an external magnetic field on the reverse flow occurring in the steady mixed convection of two Newtonian immiscible fluids filling a vertical channel under the Oberbeck–Boussinesq approximation. The two isothermal boundaries are kept either at different or at equal temperatures. The velocity, the temperature, and the induced magnetic field are obtained analytically. The results are presented graphically and discussed for various values of the parameters involved in the problem (in particular, the Hartmann number and the buoyancy coefficient) and are compared with those for a single Newtonian fluid. The occurrence of the reverse flow is explained and carefully studied.

References

References
1.
Chamkha
,
A. J.
,
2002
, “
On Laminar Hydromagnetic Mixed Convection Flow in a Vertical Channel With Symmetric and Asymmetric Wall Heating Conditions
,”
Int. J. Heat Mass Transfer
,
45
(
12
), pp.
2509
2525
.
2.
Borrelli
,
A.
,
Giantesio
,
G.
, and
Patria
,
M.
,
2015
, “
Magnetoconvection of a Micropolar Fluid in a Vertical Channel
,”
Int. J. Heat Mass Transfer
,
80
(1), pp.
614
625
.
3.
Borrelli
,
A.
,
Giantesio
,
G.
, and
Patria
,
M.
,
2016
, “
Influence of an Internal Heat Source or Sink on the Magnetoconvection of a Micropolar Fluid in a Vertical Channel
,”
Int. J. Pure Appl. Math.
,
108
(2), pp.
425
450
.
4.
Miguel
,
U.
, and
Sheng
,
X.
,
2014
, “
The Immersed Interface Method for Simulating Two-Fluid Flows
,”
Numer. Math.: Theory Methods Appl.
,
7
(
4
), pp.
447
472
.
5.
Rickett
,
L. M.
,
Penfold
,
R.
,
Blyth
,
M. G.
,
Purvis
,
R.
, and
Cooker
,
M. J.
,
2015
, “
Incipient Mixing by Marangoni Effects in Slow Viscous Flow of Two Immiscible Fluid Layers
,”
IMA J. Appl. Math.
,
80
(
5
), pp.
1582
1618
.
6.
Kusaka
,
Y.
,
2016
, “
Classical Solvability of the Stationary Free Boundary Problem Describing the Interface Formation Between Two Immiscible Fluids
,”
Anal. Math. Phys.
,
6
(
2
), pp.
109
140
.
7.
Chamkha
,
A. J.
,
2000
, “
Flow of Two-Immiscible Fluids in Porous and Nonporous Channels
,”
ASME J. Fluids Eng.
,
122
(
1
), pp.
117
124
.
8.
Kumar
,
J. P.
,
Umavathi
,
J.
, and
Biradar
,
B. M.
,
2011
, “
Mixed Convection of Magneto Hydrodynamic and Viscous Fluid in a Vertical Channel
,”
Int. J. Non-Linear Mech.
,
46
(
1
), pp.
278
285
.
9.
Malashetty
,
M. S.
,
Umavathi
,
J. C.
, and
Kumar
,
J. P.
,
2006
, “
Magnetoconvection of Two-Immiscible Fluids in Vertical Enclosure
,”
Heat Mass Transfer
,
42
(
11
), pp.
977
993
.
10.
Kumar
,
J. P.
,
Umavathi
,
J. C.
,
Chamkha
,
A. J.
, and
Ramarao
,
Y.
,
2015
, “
Mixed Convection of Electrically Conducting and Viscous Fluid in a Vertical Channel Using Robin Boundary Conditions
,”
Can. J. Phys.
,
93
(
6
), pp.
698
710
.
11.
Wakale
,
A. B.
,
Venkatasubbaiah
,
K.
, and
Sahu
,
K. C.
,
2015
, “
A Parametric Study of Buoyancy-Driven Flow of Two-Immiscible Fluids in a Differentially Heated Inclined Channel
,”
Comput. Fluids
,
117
(1), pp.
54
61
.
12.
Barannyk
,
L. L.
,
Papageorgiou
,
D. T.
,
Petropoulos
,
P. G.
, and
Vanden-Broeck
,
J.-M.
,
2015
, “
Nonlinear Dynamics and Wall Touch-Up in Unstably Stratified Multilayer Flows in Horizontal Channels Under the Action of Electric Fields
,”
SIAM J. Appl. Math.
,
75
(
1
), pp.
92
113
.
13.
Mohammadi
,
A.
, and
Smits
,
A. J.
,
2016
, “
Stability of Two-Immiscible-Fluid Systems: A Review of Canonical Plane Parallel Flows
,”
ASME J. Fluids Eng.
,
138
(
10
), p.
100803
.
14.
Kumar
,
J. P.
,
Umavathi
,
J.
,
Chamkha
,
A. J.
, and
Pop
,
I.
,
2010
, “
Fully-Developed Free-Convective Flow of Micropolar and Viscous Fluids in a Vertical Channel
,”
Appl. Math. Modell.
,
34
(
5
), pp.
1175
1186
.
15.
Aung
,
W.
, and
Worku
,
G.
,
1986
, “
Developing Flow and Flow Reversal in a Vertical Channel With Asymmetric Wall Temperature
,”
ASME J. Heat Transfer
,
108
(
2
), pp.
299
304
.
16.
Borrelli
,
A.
,
Giantesio
,
G.
, and
Patria
,
M. C.
,
2013
, “
Numerical Simulations of Three-Dimensional MHD Stagnation-Point Flow of a Micropolar Fluid
,”
Comput. Math. Appl.
,
66
(
4
), pp.
472
489
.
17.
Bhattacharyya
,
S.
, and
Gupta
,
A.
,
1998
, “
MHD Flow and Heat Transfer at a General Three-Dimensional Stagnation Point
,”
Int. J. Non-Linear Mech.
,
33
(
1
), pp.
125
134
.
18.
Borrelli
,
A.
,
Giantesio
,
G.
, and
Patria
,
M.
,
2013
, “
On the Numerical Solutions of Three-Dimensional MHD Stagnation-Point Flow of a Newtonian Fluid
,”
Int. J. Pure Appl. Math.
,
86
(2), pp.
425
442
.
19.
Ferraro
,
V. C. A.
, and
Plumpton
,
C.
,
1961
,
An Introduction to Magneto-Fluid Mechanics
, Oxford University Press, Oxford, UK.
You do not currently have access to this content.