Three-dimensional (3D) simulations with ansys cfx 16.1 as well as measurements of the cavitating flow in a low specific speed centrifugal pump (nq = 12 min−1) are performed for different operation conditions and varying surface roughness. Surface roughness is considered by wall functions in the flow simulations. Good agreement between measured and calculated head is achieved for noncavitating flow. Net positive suction head (NPSH3%) rises toward overload due to incidence, flow separation, and vapor zones at the volute tongue. The NPSH3% rise is slightly higher for rough walls according to measurements and significantly overestimated by the wall function approach, irrespective of the roughness level in the simulation. A low-Reynolds number approach at the volute tongue leads to a more accurate prediction of NPSH3% than wall functions, at the cost of high computational effort.

References

References
1.
Wang
,
Y.
, and
Wang
,
W. J.
,
2012
, “
Applicability of Eddy Viscosity Turbulence Models in Low Specific Speed Centrifugal Pump
,”
IOP Conf. Ser.: Earth Environ. Sci.
,
15
(
6
), p. 062013.
2.
Benigni
,
H.
,
Jaberg
,
H.
,
Yeung
,
H.
,
Salisbury
,
T.
,
Berry
,
O.
, and
Collins
,
T.
,
2012
, “
Numerical Simulation of Low Specific Speed American Petroleum Institute Pumps in Part-Load Operation and Comparison With Test Rig Results
,”
ASME J. Fluids Eng.
,
134
(
2
), p.
024501
.
3.
Limbach
,
P.
,
Kimoto
,
M.
,
Deimel
,
C.
, and
Skoda
,
R.
,
2014
, “
Numerical 3D Simulation of the Cavitating Flow in a Centrifugal Pump With Low Specific Speed and Evaluation of the Suction Head
,”
ASME
Paper No. GT2014-26089.
4.
Gülich
,
J. F.
,
2010
,
Centrifugal Pumps
,
Springer
,
Berlin
.
5.
Varley
,
F. A.
,
1961
, “
Effects of Impeller Design and Surface Roughness on the Performance of Centrifugal Pumps
,”
Proc. Inst. Mech. Eng.
,
175
(
1961
), pp.
955
969
.
6.
Tamm
,
A.
,
Eikmeier
,
L.
, and
Stoffel
,
B.
,
2002
, “
The Influences of Surface Roughness on Head, Power Input and Efficiency of Centrifugal Pumps
,”
XXI IAHR Symposium on Hydraulic Machinery and Systems
,
Lausanne, Switzerland
,
Oct. 6–9
, pp. 87–93.
7.
Gülich
,
J. F.
,
2003
, “
Effect of Reynolds Number and Surface Roughness on the Efficiency of Centrifugal Pumps
,”
ASME J. Fluids Eng.
,
125
(
4
), pp.
670
679
.
8.
Worster
,
R. C.
,
1963
, “
The Flow in Volutes and Its Effect on Centrifugal Pump Performance
,”
Proc. Inst. Mech. Eng.
,
177
(
1
), pp.
843
875
.
9.
Juckelandt
,
K.
,
Bleeck
,
S.
, and
Wurm
,
F. H.
,
2015
, “
Analysis of Losses in Centrifugal Pumps With Low Specific Speed With Smooth and Rough Walls
,”
11th European Conference on Turbomachinery
Fluid dynamics & Thermodynamics (
ETC11
),
Madrid, Spain
,
Mar. 23–27
, Paper No. ETC2015-068.http://aerospace-europe.eu/media/books/ETC2015-068.pdf
10.
Wo
,
A. M.
, and
Bons
,
J. P.
,
1993
, “
Flow Physics Leading to System Instability in a Centrifugal Pump
,”
ASME J. Turbomach.
,
116
(
4
), pp.
612
620
.
11.
Kelder
,
J. D. H.
,
Dijkers
,
R. J. H.
,
van Esch
,
B. P. M.
, and
Kruyt
,
N. P.
,
2001
, “
Experimental and Theoretical Study of the Flow in the Volute of a Low Specific-Speed Pump
,”
Fluid Dyn. Res.
,
28
(
4
), pp.
267
280
.
12.
Wilcox
,
D. C.
,
2006
,
Turbulence Modeling for CFD
,
DCW Industries
,
La Canada, CA
.
13.
Juckelandt
,
K.
, and
Wurm
,
F. H.
,
2015
, “
Applicability of Wall-Function Approach in Simulations of Turbomachines
,”
ASME
Paper No. GT2015-42014.
14.
Limbach
,
P.
,
Müller
,
T.
,
Blume
,
M.
, and
Skoda
,
R.
,
2016
, “
Numerical and Experimental Investigation of the Cavitating Flow in a Low Specific Speed Centrifugal Pump and Assessment of the Influence of Surface Roughness on Head Prediction
,”
International Symposium on Transport Phenomena and Dynamics of Rotating Machinery
(
ISROMAC
),
Honolulu, HI
,
Apr. 10–15
, Paper No. 288.http://isromac-isimet.univ-lille1.fr/upload_dir/finalpaper/288.revisedPaper_ISROMAC_Limbach.pdf
15.
Koop
,
A. H.
,
2008
, “
Numerical Simulation of Unsteady Three-Dimensional Sheet Cavitation
,”
Ph.D. thesis
, University of Twente, Enschede, The Netherlands.http://doc.utwente.nl/61072/1/thesis_A_Koop.pdf
16.
Frobenius
,
M.
,
Schilling
,
R.
,
Friedrichs
,
J.
, and
Kosyna
,
G.
,
2003
, “
Numerical and Experimental Investigations of the Cavitating Flow in a Centrifugal Pump Impeller
,”
ASME
Paper No. FEDSM2002-31006.
17.
Zhang
,
D.
,
Shi
,
W.
,
Pan
,
D.
, and
Dubuisson
,
M.
,
2015
, “
Numerical and Experimental Investigation of Tip Leakage Vortex Cavitation Patterns and Mechanisms in an Axial Flow Pump
,”
ASME J. Fluids Eng.
,
137
(
12
), p.
121103
.
18.
Fu
,
Y.
,
Yuan
,
J.
,
Yuan
,
S.
,
Pave
,
G.
,
d'Agostino
,
L.
,
Huang
,
P.
, and
Li
,
X.
,
2014
, “
Numerical and Experimental Analysis of Flow Phenomena in a Centrifugal Pump Operating Under Low Flow Rates
,”
ASME J. Fluids Eng.
,
137
(
1
), p.
011102
.
19.
Nohmi
,
M.
,
2012
, “
A Review: A Basic Research on Total Prediction System for Cavitation Phenomena
,”
Eighth International Symposium on Cavitation
(
CAV
),
Singapore
,
Aug. 13–16
, pp. 466–470.
20.
Schiavello
,
B.
, and
Visser
,
F. C.
,
2009
, “
Pump Cavitation—Various NPSHR Criteria, NPSHA Margins, and Impeller Life Expectancy
,”
25th International Pump Users Symposium
,
Houston, TX
,
Feb. 23–26
, pp. 113–144.
21.
Abernethy
,
R. B.
,
Benedict
,
R. P.
, and
Dowdell
,
R. B.
,
1985
, “
ASME Measurement Uncertainty
,”
ASME J. Fluids Eng.
,
107
(
2
), pp.
161
164
.
22.
Zwart
,
P. J.
,
Gerber
,
A. G.
, and
Belamri
,
T.
,
2004
, “
A Two-Phase Flow Model for Predicting Cavitation Dynamics
,”
ICMF International Conference on Multiphase Flow
,
Yokohama, Japan
,
May 30–June 4
, Paper No. 152.
23.
Rayleigh
,
L.
,
1917
, “
On the Pressure Developed in a Liquid During the Collapse of a Spherical Cavity
,”
Philos. Mag. Ser. 6
,
34
(
200
), pp.
94
98
.
24.
Johnsen
,
E.
, and
Colonius
,
T.
,
2009
, “
Numerical Simulations of Non-Spherical Bubble Collapse
,”
J. Fluid Mech.
,
629
(
1
), pp.
231
262
.
25.
Brennen
,
C. E.
,
2011
,
Hydrodynamics of Pumps
,
Cambridge University Press
,
New York
.
26.
Plesset
,
M. S.
, and
Prosperetti
,
A.
,
1977
, “
Bubble Dynamics and Cavitation
,”
Annu. Rev. Fluid Mech.
,
9
(
1
), pp.
145
185
.
27.
Bakir
,
F.
,
Rey
,
R.
,
Gerber
,
A. G.
,
Belamri
,
T.
, and
Hutchinson
,
B.
,
2004
, “
Numerical and Experimental Investigations of the Cavitating Behavior of an Inducer
,”
Int. J. Rotating Mach.
,
10
(
1
), pp.
15
25
.
28.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
29.
Grotjans
,
H.
, and
Menter
,
F. R.
,
1998
, “
Wall Functions for General Application CFD Codes
,”
Fourth Computational Fluid Dynamics Conference
,
Yokohama, Japan
, pp.
1112
1117
.
30.
Smirnov
,
P. E.
, and
Menter
,
F. R.
,
2009
, “
Sensitization of the SST Turbulence Model to Rotation and Curvature by Applying the Spalart-Shur Correction Term
,”
ASME J. Turbomach.
,
131
(
4
), p.
041010
.
31.
Lechner
,
R.
, and
Menter
,
F.
,
2004
, “
Development of a Rough Wall Boundary Condition for ω-Based Turbulence Models
,” Technical Report, ANSYS, Otterfing, Germany, Report No. TR-04-04.
32.
Grein
,
H.
,
1975
, “
Einige Bemerkungen Über die Oberflächenrauheit der Benetzten Komponenten Hydraulischer Grossmaschinen
,”
Escher Wyss Mitt.
,
1
, pp.
34
40
.
33.
Tamm
,
A.
, and
Stoffel
,
B.
,
2002
, “
The Influences of Gap Clearance and Surface Roughness on Leakage Loss and Disc Friction of Centrifugal Pumps
,”
ASME
Paper No. FEDSM2002-31324.
34.
Numachi
,
F.
,
Oba
,
R.
, and
Chida
,
I.
,
1965
, “
Effect of Surface Roughness on Cavitation Performance of Hydrofoils—Report 1
,”
J. Basic Eng.
,
87
(
2
), pp.
495
502
.
35.
Bachert
,
R.
,
Stoffel
,
B.
, and
Dular
,
M.
,
2010
, “
Unsteady Cavitation at the Tongue of the Volute of a Centrifugal Pump
,”
ASME J. Fluids Eng.
,
132
(
6
), p.
061301
.
36.
Dular
,
M.
,
Bachert
,
R.
, and
Širok
,
B.
,
2004
, “
Relationship Between Cavitation Structures and Cavitation Damage
,”
Wear
,
257
(
11
), pp.
1176
1184
.
37.
Reboud
,
J. L.
,
Stutz
,
B.
, and
Coutier
,
O.
,
1998
, “
Two-Phase Flow Structure of Cavitation: Experiment and Modelling of Unsteady Effects
,”
Third International Symposium on Cavitation
,
Grenoble, France
,
Apr. 7–10
.
38.
Coutier-Delgosha
,
O.
,
Fortes-Patella
,
R.
, and
Reboud
,
J. L.
,
2003
, “
Evaluation of the Turbulence Model Influence on the Numerical Simulations of Unsteady Cavitation
,”
ASME J. Fluids Eng.
,
125
(
1
), pp.
38
45
.
You do not currently have access to this content.