A new two-fluid model averaging in the near-wall region is proposed to ensure consistent matching of the two-phase k–ε turbulence model with the two-phase logarithmic law of the wall (Marie J. L., Moursali, E., and Tran-Cong, S., 1997, “Similarity Law and Turbulence Intensity Profiles in a Bubbly Boundary Layer,” Int. J. Multiphase Flow, 23(2), pp. 227–247). The void fraction distribution obtained with the averaging procedure is seen to conform to the two-phase wall function approach which is based on a double step function void fraction distribution. In particular, the proposed averaging technique is shown to achieve grid convergence in the near-wall region, which could not be obtained otherwise. Computational fluid dynamics (CFD) results with the proposed technique are in good agreement with experiments on upward bubbly flows over a flat plate, and upward and downward flows in pipes. An additional advantage of the proposed technique is that it replaces the wall force model, which has a significant degree of uncertainty in turbulent flow modeling, with a simpler geometric constraint.

References

References
1.
Launder
,
B. E.
, and
Spalding
,
D. B.
,
1974
, “
The Numerical Computation of Turbulent Flows
,”
Comput. Methods Appl. Mech. Eng.
,
3
(
2
), pp.
269
289
.
2.
Marie
,
J. L.
,
Moursali
,
E.
, and
Tran-Cong
,
S.
,
1997
, “
Similarity Law and Turbulence Intensity Profiles in a Bubbly Boundary Layer
,”
Int. J. Multiphase Flow
,
23
(
2
), pp.
227
247
.
3.
Drew
,
D. A.
, and
Lahey
,
R. T.
, Jr.
,
1981
, “
Phase Distribution Mechanisms in Turbulent Two-Phase Flow in Channels of Arbitrary Cross Section
,”
ASME J. Fluids Eng.
,
103
(
4
), pp.
583
589
.
4.
Lance
,
M.
, and
Lopez de Bertodano
,
M.
,
1994
, “
Phase Distribution Phenomena and Wall Effects in Bubbly Two-Phase Flows
,”
Multiphase Sci. Technol.
,
8
(
1
), pp.
69
123
.
5.
Lopez de Bertodano
,
M.
,
Lahey
,
R. T.
, Jr.
, and
Jones
,
O. C.
,
1994
, “
Development of a k-epsilon Model for Bubbly Two-Phase Flow
,”
ASME J. Fluids Eng.
,
116
(
1
), pp.
128
134
.
6.
Tomiyama
,
A.
,
1998
, “
Struggle With Computational Bubble Dynamics
,”
Multiphase Sci. Technol.
,
10
(
4
), pp.
369
405
.
7.
Lucas
,
D.
,
Krepper
,
E.
, and
Prasser
,
H.-M.
,
2001
, “
Prediction of Radial Gas Profiles in Vertical Pipe Flow on the Basis of Bubble Size Distribution
,”
Int. J. Therm. Sci.
,
40
(
3
), pp.
217
225
.
8.
Cheung
,
S. C. P.
,
Yeoh
,
G. H.
, and
Tu
,
J. Y.
,
2008
, “
Population Balance Modeling of Bubbly Flows Considering the Hydrodynamics and Thermomechanical Processes
,”
AIChE J.
,
54
(
7
), pp.
1689
1710
.
9.
Das
,
A. K.
, and
Das
,
P. K.
,
2010
, “
Modelling Bubbly Flow and Its Transitions in Vertical Annuli Using Population Balance Technique
,”
Int. J. Heat Fluid Flow
,
31
(
1
), pp.
101
114
.
10.
Rzehak
,
R.
, and
Krepper
,
E.
,
2013
, “
Closure Models for Turbulent Bubbly Flows: A CFD Study
,”
Nucl. Eng. Des.
,
265
, pp.
701
711
.
11.
Rzehak
,
R.
,
Krepper
,
E.
,
Liao
,
Y.
,
Ziegenhein
,
T.
,
Kriebitzsch
,
S.
, and
Lucas
,
D.
,
2015
, “
Baseline Model for the Simulation of Bubbly Flows
,”
Chem. Eng. Technol.
,
38
(
11
), pp.
1972
1978
.
12.
Nakoryakov
,
V. E.
,
Kashinsky
,
O. N.
,
Randin
,
V. V.
, and
Timkin
,
L. S.
,
1996
, “
Gas–Liquid Bubbly Flow in Vertical Pipes
,”
ASME J. Fluids Eng.
,
118
(
2
), pp.
377
382
.
13.
Troshko
,
A. A.
, and
Hassan
,
Y.
,
2001
, “
A Two-Equation Turbulence Model of Turbulent Bubbly Flows
,”
Int. J. Multiphase Flows
,
27
(
11
), pp.
1965
2000
.
14.
Aliseda
,
A.
, and
Lasheras
,
J. C.
,
2006
, “
Effect of Buoyancy on the Dynamics of a Turbulent Boundary Layer Laden With Microbubbles
,”
J. Fluid Mech.
,
559
, pp.
307
334
.
15.
Sad Chemloul
,
N.
, and
Benrabah
,
O.
,
2008
, “
Measurement of Velocities in Two-Phase Flow by Laser Velocimetery: Interaction Between Solid Particles' Motion and Turbulence
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
071301
.
16.
Antal
,
S. P.
,
Lahey
,
R. T.
, and
Flaherty
,
J. E.
,
1991
, “
Analysis of Phase Distribution in Fully Developed Laminar Bubbly Two-Phase Flow
,”
Int. J. Multiphase Flow
,
17
(
5
), pp.
635
652
.
17.
Hosokawa
,
S.
,
Tomiyama
,
A.
,
Misaki
,
S.
, and
Hamada
,
T.
,
2002
, “
Lateral Migration of Single Bubbles Due to the Presence of Wall
,”
ASME
Paper No. FEDSM2002-31148.
18.
Frank
,
T.
,
Shi
,
J. M.
, and
Burns
,
A. D.
,
2004
, “
Validation of Eulerian Multiphase Flow Models for Nuclear Safety Applications
,”
Third International Symposium on Two-Phase Flow Modeling and Experimentation
, Pisa, Italy, Sept. 22–24.
19.
Felton
,
K.
, and
Loth
,
E.
,
2001
, “
Spherical Bubble Motion in a Turbulent Boundary Layer
,”
Phys. Fluids
,
13
(
9
), pp.
2564
2577
.
20.
Zaruba
,
A.
,
Lucas
,
D.
,
Prasser
,
H.-M.
, and
Hohne
,
T.
,
2007
, “
Bubble-Wall Interactions in a Vertical Gas–Liquid Flow: Bouncing, Sliding, and Bubble Deformations
,”
Chem. Eng. Sci.
,
62
(
6
), pp.
1591
1605
.
21.
Tran-Cong
,
S.
,
Marie
,
J. L.
, and
Perkins
,
R. J.
,
2008
, “
Bubble Migration in a Turbulent Boundary Layer
,”
Int. J. Multiphase Flow
,
34
(
8
), pp.
786
807
.
22.
Larrateguy
,
A. E.
,
Drew
,
D. A.
, and
Lahey
,
R. T.
, Jr
.,
2002
, “
A Particle Center-Averaged Two-Fluid Model for Wall-Bounded Bubbly Flows
,”
ASME
Paper No. FEDSM2002-31212.
23.
Moraga
,
F. J.
,
Larreteguy
,
A. E.
,
Drew
,
D. A.
, and
Lahey
,
R. T.
, Jr.
,
2006
, “
A Center-Averaged Two-Fluid Model for Wall-Bounded Bubbly Flows
,”
Comput. Fluids
,
35
(
4
), pp.
429
461
.
24.
Nakoryakov
,
V. E.
,
Kashinsky
,
O. N.
,
Kozmenko
,
B. K.
, and
Gorelik
,
R. S.
,
1986
, “
Study of Upward Bubbly Flow at Low Liquid Velocities
,”
Izv. Sib. Otdel. Akad. Nauk SSSR
,
16
, pp.
15
20
.
25.
Serizawa
,
A.
,
Kataoka
,
I.
, and
Michiyoshi
,
I.
,
1986
, “
Phase Distribution in Bubbly Flow, Data Set No. 24
,”
The Second International Workshop on Two-Phase Flow Fundamentals
, Troy, NY.
26.
Wang
,
S. K.
,
Lee
,
S. J.
,
Jones
,
O. C.
, Jr.
, and
Lahey
,
R. T.
, Jr.
,
1987
, “
3-D Turbulence Structure and Phase Distribution Measurements in Bubbly Two-Phase Flows
,”
Int. J. Multiphase Flow
,
13
(
3
), pp.
327
343
.
27.
Ishii
,
M.
,
1975
,
Thermo-Fluid Dynamic Theory of Two-Phase Flow
,
Eyrolles
,
Paris, France
.
28.
Drew
,
D. A.
, and
Passman
,
S. L.
,
1998
,
Theory of Multicomponent Fluids
,
Springer-Verlag
,
New York
.
29.
Ishii
,
M.
, and
Zuber
,
N.
,
1979
, “
Drag Coefficient and Relative Velocity in Bubbly, Droplet or Particulate Flows
,”
AIChE
,
25
(
5
), pp.
843
855
.
30.
Auton
,
T. R.
,
1987
, “
The Lift Force on a Spherical Body in a Rotational Flow
,”
J. Fluid Mech.
,
183
, pp.
199
218
.
31.
Prabhudharwadkar
,
D. M.
,
Bailey
,
C. A.
,
Lopez de Bertodano
,
M. A.
, and
Buchanan
,
J. R.
, Jr.
,
2009
, “
Two-Fluid CFD Model of Adiabatic Air-Water Upward Bubbly Flow Through a Vertical Pipe With a One-Group Interfacial Area Transport Equation
,”
ASME
Paper No. FEDSM2009-78306.
32.
Frank
,
T. H.
,
Zwart
,
P. J.
,
Krepper
,
E.
,
Prasser
,
H.-M.
, and
Lucas
,
D.
,
2008
, “
Validation of CFD Models for Mono- and Poludisperse Air-Water Two-Phase Flows in Pipes
,”
Nucl. Eng. Des.
,
238
(
3
), pp.
647
659
.
33.
Lopez de Bertodano
,
M.
,
1992
, “
Turbulent Bubbly Two-Phase Flow in a Triangular Duct
,” Ph.D. dissertation, Rensselaer Polytechnic Institute, Troy, NY.
34.
Sato
,
Y.
,
Sadatomi
,
M.
, and
Sekoguchi
,
K.
,
1981
, “
Momentum and Heat Transfer in Two-Phase Bubble Flow
,”
Int. J. Multiphase Flow
,
7
(
2
), pp.
167
177
.
35.
Prandtl
,
L.
,
1925
, “
A Report on Testing for Built-Up Turbulence
,”
ZAMM J. Appl. Math. Mech.
,
5
, pp.
136
139
.
36.
Tennekes
,
H.
,
1965
, “
Similarity Laws for Turbulent Boundary Layers With Suction or Injection
,”
J. Fluid Mech.
,
21
(
04
), pp.
689
703
.
37.
Lopez de Bertodano
,
M.
,
Lahey
,
R. T.
, Jr.
, and
Jones
,
O. C.
,
1994
, “
Phase Distribution in Bubbly Two-Phase Flow in Vertical Ducts
,”
Int. J. Multiphase Flow
,
20
(
5
), pp.
805
818
.
You do not currently have access to this content.