Cavitating flow in nozzles is a complex flow which implies a highly turbulent two-phase one. An accurate simulation which improves some numerical results found in the literature was achieved by means of an extensive analysis of the capabilities of several numerical models for turbulence and cavitation. The analysis performed involves calibration/optimization tasks based on the physics of this kind of flow. This work aims to provide a quantitative criterion for the judgment of internal flow state, because it was demonstrated that the numerical results obtained with noncalibrated models could be enhanced by means of a careful calibration and thus saving computational costs.

References

References
1.
Ardnt
,
R.
,
2002
, “
Cavitation in Vortical Flows
,”
Annu. Rev. Fluid Mech.
,
34
, pp.
143
175
.
2.
Brennen
,
C.
,
1995
,
Cavitation and Bubble Dynamics
,
Oxford University Press
,
New York
.
3.
Knapp
,
R.
,
Daily
,
J.
, and
Hammit
,
F.
,
1970
,
Cavitation
,
McGraw-Hill
,
New York
.
4.
Kubota
,
A.
,
Kato
,
H.
, and
Yamaguchi
,
H.
,
1992
, “
A New Modeling of Cavitating Flows: A Numerical Study of Unsteady Cavitation on a Hydrofoil Section
,”
J. Fluid Mech.
,
240
, pp.
59
96
.
5.
Singhal
,
A.
,
Athavale
,
M.
,
Li
,
H.
, and
Jiang
,
Y.
,
2002
, “
Mathematical Basis and Validation of Full Cavitation Model
,”
ASME J. Fluids Eng.
,
124
(
3
), pp.
617
624
.
6.
Zwart
,
J.
,
Gerber
,
A.
, and
Belamri
,
T.
,
2004
, “
Two-Phase Flow Model for Predicting Cavitation Dynamics
,”
5th International Conference on Multiphase Flow
, Yokohama, Japan, Paper No. 152.
7.
Kozubková
,
M.
,
Rautová
,
J.
, and
Bojko
,
M.
,
2012
, “
Mathematical Model of Cavitation and Modeling of Fluid Flow in Cone
,”
Procedia Eng.
,
39
, pp.
9
18
.
8.
Hammit
,
F.
,
1980
,
Cavitation and Multiphase Flow Phenomena
,
McGraw-Hill
,
New York
.
9.
Franc
,
J.
, and
Michel
,
J.
,
2004
,
Fundamentals of Cavitation
,
Kluwer Academic
,
New York
.
10.
Echouchene
,
F.
,
Belmabrouk
,
H.
,
Le Penven
,
L.
, and
Buffat
,
M.
,
2011
, “
Numerical Simulation of Wall Roughness Effects in Cavitating Flow
,”
Int. J. Heat Fluid Flow
,
32
(
5
), pp.
1068
1075
.
11.
Peters
,
A.
,
Sagar
,
H.
,
Lantermann
,
U.
, and
Moctar
,
O.
,
2015
, “
Numerical Modeling and Prediction of Cavitation Erosion
,”
Wear
,
338–339
, pp.
189
201
.
12.
Duan
,
L.
,
Yuan
,
S.
,
Hub
,
L.
,
Yang
,
W.
,
Yu
,
J.
, and
Xia
,
X.
,
2016
, “
Injection Performance and Cavitation Analysis of an Advanced 250 MPa Common Rail Diesel Injector
,”
Int. J. Heat Mass Transfer
,
93
, pp.
388
397
.
13.
Sou
,
A.
,
Biçer
,
B.
, and
Tomiyama
,
A.
,
2014
, “
Numerical Simulation of Incipient Cavitation Flow in a Nozzle of Fuel Injector
,”
Comput. Fluid
,
103
, pp.
42
48
.
14.
Nurick
,
W.
,
1976
, “
Orifice Cavitation and Its Effect on Spray Mixing
,”
ASME J. Fluids Eng.
,
98
(
4
), pp.
681
687
.
15.
Peterson
,
F.
,
1977
, “
Discussion: Orifice Cavitation and Its Effect on Spray Mixing
,”
ASME J. Fluids Eng.
,
99
(
2
), pp.
426
–427 (Nurick, W. H., 1976, J. Fluids Eng. 98(2), 681–687).
16.
Callenaere
,
M.
,
Franc
,
J.
,
Michel
,
J.
, and
Riondet
,
M.
,
2001
, “
The Cavitation Instability Induced by the Development of a Re-Entrant Jet
,”
J. Fluid Mech.
,
444
, pp.
223
256
.
17.
Stutz
,
B.
, and
Reboud
,
J.
,
1997
, “
Two Phase Flow Structure of Sheet Cavitation
,”
Phys. Fluids
,
9
(
12
), pp.
3678
3686
.
18.
Stutz
,
B.
, and
Reboud
,
J.
,
1997
, “
Experiment on Unsteady Cavitation
,”
Exp. Fluids
,
22
(
3
), pp.
191
198
.
19.
Stutz
,
B.
, and
Reboud
,
J.
,
2000
, “
Measurements Within Unsteady Cavitation
,”
Exp. Fluids
,
39
(6), pp.
545
552
.
20.
Sato
,
K.
,
Hachino
,
K.
, and
Saito
,
Y.
,
2003
, “
Inception and Dynamics of Traveling Bubble Type Cavitation in a Venturi
,”
ASME
Paper No. FEDSM2003-45322.
21.
Barre
,
S.
,
Rolland
,
J.
,
Boitel
,
G.
,
Goncalves
,
E.
, and
Fortes-Patella
,
R.
,
2009
, “
Experiments and Modeling of Cavitating Flows in Venturi: Attached Sheet Cavitation
,”
Eur. J. Mech. B/Fluids
,
28
(
3
), pp.
444
464
.
22.
Goncalves
,
E.
, and
Fortes-Patella
,
R.
,
2009
, “
Numerical Simulations of Cavitating Flows With Homogeneous Models
,”
Comput. Fluids
,
38
(9), pp.
682
696
.
23.
Wilcox
,
D.
,
1998
,
Turbulence Modeling for CFD
,
DCW Industries
,
CA
.
24.
Spalart
,
P.
, and
Allmaras
,
R.
,
1994
, “
A One-Equation Turbulence Model for Aerodynamic Flows
,”
Rech. Aeroespatiale
,
1
, pp.
5
21
.
25.
Coussirat
,
M.
,
2003
, “
Theoretical/Numerical Study of Flows With Strong Streamlines Curvature
,” Ph.D. thesis,
Universitat Politècnica de Catalunya, Barcelona, Spain
.
26.
Versteeg
,
H.
, and
Malalasekera
,
W.
,
2007
,
An Introduction to Computational Fluid Dynamics: The Finite Volume Method
,
Pearson/Prentice Hall
,
Upper Saddle River, NJ
.
27.
Sagaut
,
P.
,
2006
,
Large Eddy Simulation for Incompressible Flows: An Introduction
,
Springer
,
Berlin
.
28.
Salvador
,
F.
,
Martínez-López
,
J.
,
Romero
,
J.
, and
Roselló
,
M.
,
2013
, “
Computational Study of the Cavitation Phenomenon and Its Interaction With the Turbulence Developed in Diesel Injector Nozzles by Large Eddy Simulation (LES)
,”
Math. Comput. Model.
,
57
, pp.
1656
1662
.
29.
Chunekar
,
A.
,
2009
, “
Numerical Modeling and Simulation of Turbulence–Cavitation Interactions in a Venturi Geometry
,”
M.Sc. thesis
,
Purdue University, West Lafayette, IN
.
30.
Rodio
,
M.
, and
Abgrall
,
R.
,
2015
, “
An Innovative Phase Transition Modeling for Reproducing Cavitation Through a Five-Equation Model and Theoretical Generalization to Six and Seven-Equation Models
,”
Int. J. Heat Mass Transfer
,
89
, pp.
1386
1401
.
31.
Kunz
,
R.
,
Boger
,
D.
,
Chyczewski
,
T.
,
Stinebring
,
D.
,
Gibeling
,
H.
, and
Govindan
,
T.
,
1999
, “
Multi-Phase CFD Analysis of Natural and Ventilated Cavitation About Submerged Bodies
,”3rd
ASME/JSME
Joint Fluids Engineering Conference
, San Francisco, CA, July 18–23, pp.
18
23
.
32.
He
,
Z.
,
Tao
,
X.
,
Zhong
,
W.
,
Leng
,
X.
,
Wang
,
Q.
, and
Zhao
,
P.
,
2015
, “
Experimental and Numerical Study of Cavitation Inception Phenomenon in Diesel Injector Nozzles
,”
Int. Commun. Heat Mass Transfer
,
65
, pp.
117
124
.
33.
Margot
,
X.
,
Hoyas
,
S.
,
Gil
,
A.
, and
Patouna
,
S.
,
2012
, “
Numerical Modeling of Cavitation: Validation and Parametric Studies
,”
Eng. Appl. Comput. Fluid Mech.
,
6
(
1
), pp.
15
24
.
34.
Coutier-Delgosha
,
O.
,
Fortes-Patella
,
R.
, and
Reboud
,
J.
,
2003
, “
Evaluation of the Turbulence Model Influence on the Numerical Simulation of Unsteady Cavitation
,”
ASME J. Fluids Eng.
,
25
(1), pp.
38
45
.
35.
Coutier-Delgosha
,
O.
,
Reboud
,
J.
, and
Delannoy
,
Y.
,
2003
, “
Numerical Simulation of the Unsteady Behavior of Cavitating Flows
,”
Int. J. Numer. Methods Fluids
,
42
, pp.
527
548
.
36.
Hassanzadeh
,
A.
,
Bakhsha
,
M.
, and
Dadvand
,
A.
,
2014
, “
Numerical Study of the Effect of Wall Injection on the Cavitation Phenomenon in Diesel Injector
,”
Eng. Appl. Comput. Fluid Mech.
,
8
(
4
), pp.
562
573
.
37.
Darbandi
,
M.
, and
Sadeghi
,
H.
,
2010
, “
Numerical Simulation of Orifice Cavitating Flows Using Two-Fluid and Three-Fluid Cavitation Models
,”
Numer. Heat Transfer, Pt. A
,
58
(
6
), pp.
505
526
.
38.
Palau
,
G.
, and
Frankel
,
S.
,
2004
, “
Numerical Modeling of Cavitation Using Fluent: Validation and Parametric Studies
,”
AIAA
Paper No. 2004-2642.
39.
Palau
,
G.
,
González
,
P.
, and
Rabiza
,
J.
,
2007
, “
Numerical Modeling of Cavitating Flows for Simple Geometries Using Fluent V6.1
,”
Span. J. Agric. Res.
,
5
(
4
), pp.
460
469
.
40.
Martynov
,
S.
,
Mason
,
D.
, and
Heikal
,
R.
,
2006
, “
Numerical Simulation of Cavitation Flows Based on Their Hydrodynamic Similarity
,”
Int. J. Engine Res.
,
7
(
3
), pp.
283
296
.
41.
ANSYS Inc.
, “
ANSYS FLUENT Software
,” http://www.ansys.com/Industries/Academic/Tools/
42.
Launder
,
B.
, and
Spalding
,
D.
,
1974
, “
The Numerical Computation of Turbulent Flows
,”
Comput. Methods Appl. Mech. Eng.
,
3
(
2
), pp.
269
289
.
43.
Shih
,
T.
,
Liou
,
W.
,
Shabbir
,
A.
,
Yang
,
Z.
, and
Zhu
,
J.
,
1995
, “
A New k-epsilon Eddy Viscosity Model for High Re Turbulent Flow—Model Development and Validation
,”
Comput. Fluids
,
24
(
3
), pp.
227
238
.
44.
Yakhot
,
V.
, and
Orszag
,
S.
,
1986
, “
Renormalization Group Analysis of Turbulence—I: Basic Theory
,”
J. Sci. Comput.
,
1
(
1
), pp.
3
51
.
45.
Menter
,
F.
,
1994
, “
Two Equations Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
46.
Launder
,
G.
,
Reece
,
J.
, and
Rodi
,
W.
,
1975
, “
Progress in the Development of a Reynolds-Stress Turbulence Closure
,”
J. Fluid Mech.
,
68
(
3
), pp.
537
566
.
47.
Escaler
,
X.
,
Egusquiza
,
E.
,
Farhat
,
M.
,
Avellan
,
F.
, and
Coussirat
,
M.
,
2006
, “
Detection of Cavitation in Hydraulic Turbines
,”
Mech. Syst. Signal Process.
,
20
(
4
), pp.
983
1007
.
48.
Pouffary
,
B.
,
2006
,
Numerical Modeling of Cavitation
(AVT-143 RTO AVT/VKI Lecture Series),
von Karman Institute
,
Rhode St. Genèse, Belgium
.
49.
Bardow
,
A.
,
Bischof
,
C.
, and
Bucker
,
H.
,
2008
, “
Sensitivity-Based Analysis of the k-ε Model for the Turbulent Flow Between Two Plates
,”
Chem. Eng. Sci.
,
63
(
19
), pp.
4763
4775
.
50.
Menter
,
F.
,
Kuntz
,
M.
, and
Langtry
,
R.
,
2003
, “
Ten Years of Industrial Experience With the SST Turbulence Model
,”
Turbulence, Heat and Mass Transfer
, Vol.
4
,
K.
Hanjalic
,
Y. Nagano
, and
M. Tummers
, eds.,
Begell House
, West Redding, CT, pp.
625
632
.
51.
Egorov
,
Y.
,
Menter
,
F.
,
Lechner
,
R.
, and
Cokljat
,
D.
,
2010
, “
The Scale-Adaptive Simulation Method for Unsteady Turbulent Flow Predictions—Part 2: Application to Complex Flows
,”
Flow Turbul. Combust.
,
85
(
1
), pp.
139
165
.
52.
Menter
,
F.
, and
Egorov
,
Y.
,
2010
, “
The Scale-Adaptive Simulation Method for Unsteady Turbulent Flow Predictions—Part 1: Theory and Model Description
,”
Flow Turbul. Combust.
,
85
(
1
), pp.
113
138
.
You do not currently have access to this content.