A fully developed turbulent particle-gas flow in a rectangular horizontal channel 100 × 10 × 4000 mm3 is disclosed with high spatial resolution two-dimensional (2D) particle image velocimetry (PIV). The objective is to increase the knowledge of the mechanisms behind alterations in turbulent characteristics when adding two sets of relatively large solid spherical particles with mean diameters of 525 and 755 μm and particle size distributions of 450–600 and 710–800 μm, respectively. Reynolds numbers are 4000 and 5600 and relatively high volume fraction of 5.4 × 10−4 and 8.0 × 10−4 are tested. Both the near wall turbulent boundary layer flow and outer core flow are considered. Results show that the carrier phase turbulent intensities increase with the volume fraction of the inertial particles. The overall mean flow velocity is affected when adding the particles but only to a minor extent. Near the wall, averaged velocity decreases while fluctuating velocity components increase when particles are added to the flow. Quadrant analysis shows the importance of sweep near the wall and ejection events in the region defined by y+ > 20. In conclusion, high inertia particles can enhance turbulence even at relatively low particle Reynolds number <90. In the near bottom wall region, particles tend to be a source of instability reflected as enhancement in rms values of the normal velocity component.

References

References
1.
Burström
,
P. E.
,
Antos
,
D.
, and
Lundström
,
T. S.
,
2015
, “
A CFD–Based Evaluation of Selective Non–Catalytic Reduction of Nitric Oxide in Iron Ore Grate–Kiln Plants
,”
Prog. Comput. Fluid Dyn.
, Int. J.,
15
(
1
), pp.
32
46
.
2.
Johansson
,
S.
,
Westerberg
,
L.
, and
Lundström
,
T. S.
,
2014
, “
Gas and Particle Flow in a Spray Roaster
,”
J. Appl. Fluid Mech.
,
7
(
2
) pp.
187
196
.
3.
Misiulia
,
D.
,
Andersson
,
A.
, and
Lundström
,
T.
,
2015
, “
Computational Investigation of an Industrial Cyclone Separator With Helical-Roof Inlet
,”
Chem. Eng. Technol.
,
38
(
8
), pp.
1425
1434
.
4.
Patro
,
P.
, and
Dash
,
S.
,
2014
, “
Computations of Particle-Laden Turbulent Jet Flows Based on Eulerian Model
,”
ASME J. Fluids Eng.
,
136
(
1
), p.
011301
.
5.
Tanaka
,
T.
, and
Eaton
,
J.
,
2010
, “
Sub-Kolmogorov Resolution Partical Image Velocimetry Measurements of Particle-Laden Forced Turbulence
,”
J. Fluid Mech.
,
643
, pp.
177
206
.
6.
Li
,
J.
,
Wang
,
H.
,
Liu
,
Z.
,
Chen
,
S.
, and
Zheng
,
C.
,
2012
, “
An Experimental Study on Turbulence Modification in the Near-Wall Boundary Layer of a Dilute Gas-Particle Channel Flow
,”
Exp. Fluids
,
53
(
5
), pp.
1
19
.
7.
Mandø
,
M.
,
2009
, “
Turbulence Modulation by Non-Spherical Particles
,”
Ph.D thesis
, Department of Energy Technology, Aalborg University, Aalborg, Denmark.
8.
Balachandar
,
S.
, and
Eaton
,
J. K.
,
2010
, “
Turbulent Dispersed Multiphase Flow
,”
Annu. Rev. Fluid Mech.
,
42
(
1
), pp.
111
133
.
9.
Gualtieri
,
P.
,
Picano
,
F.
,
Sardina
,
G.
, and
Casciola
,
C. M.
,
2013
, “
Clustering and Turbulence Modulation in Particle Laden Shear Flows
,”
J. Fluid Mech.
,
715
, pp.
134
162
.
10.
Wu
,
Y.
,
Wang
,
H.
, and
Liu
,
Z.
,
2006
, “
Experimental Investigation on Turbulence Modification in a Horizontal Channel Flow at Relatively Low Mass Loading
,”
Acta Mech. Sin.
,
22
(
2
) pp.
99
108
.
11.
Li
,
J.
,
Wang
,
H.
,
Liu
,
Z.
,
Liu
,
Y. M.
,
Han
,
H. F.
, and,
Zheng
,
C. G.
,
2010
, “
Experimental Investigation on Turbulence Modulation in the Boundary Layer of a Horizontal Particle-Laden Channel Flow With Relative Low Mass Loading Ratios
,”
Sixth International Symposium on Multiphase Flow, Heat Mass Transfer, and Energy Conversion
, Xian, China, July 11–15, Vol.
1207
, pp.
436
441
.
12.
Saber
,
A.
,
Lundström
,
T. S.
, and
Hellström
,
J. G. I.
,
2015
, “
Turbulent Modulation in Particulate Flow: A Review of Critical Variables
,”
Engineering
,
7
(
10
) pp.
597
609
.
13.
Göktepe
,
B.
,
Umeki
,
K.
, and
Gebart
,
R.
,
2015
, “
Does Distance Among Biomass Particles Affect Soot Formation in an Entrained Flow Gasification Process?
,”
Fuel Process. Technol.
,
141
(Pt. 1), pp.
99
105
.
14.
Fox
,
R. W.
,
McDonald
,
A. T.
, and
Pritchard
,
P. J.
,
2006
,
Introduction to Fluid Mechanics: 2006
,
6th ed.
,
Wiley
, New York.
15.
Morel
,
T.
,
1975
, “
Comprehensive Design of Axisymmetric Wind Tunnel Contractions
,”
ASME J. Fluids Eng.
,
97
(
2
), pp.
225
233
.
16.
Saber
,
A.
,
2015
, “
Non-Spherical Particle Interaction in Duct and Jet Flow
,” Doctoral thesis, Fluid and Experimental Mechanics/Luleå University of Technology, Luleå, Sweden.
17.
Green
,
T.
,
Lindmark
,
E.
, and
Lundström
,
T.
,
2011
, “
Flow Characterization of an Attraction Channel as Entrance to Fishways
,”
River Res. Appl.
,
27
(
10
), pp.
1290
1297
.
18.
Larsson
,
I. S.
,
Granström
,
B. R.
, and
Lundström
,
T. S.
,
2012
, “
PIV Analysis of Merging Flow in a Simplified Model of a Rotary Kiln
,”
Exp. Fluids
,
53
(
2
), pp.
545
560
.
19.
Larsson
,
I.
,
Lindmark
,
E. M.
, and
Lundström
,
T. S.
,
2012
, “
Visualization of Merging Flow by Usage of PIV and CFD With Application to Grate-Kiln Induration Machines
,”
J. Appl. Fluid Mech.
,
5
(
4
), pp.
81
89
.
20.
Liu
,
Z.
,
Landreth
,
C.
, and
Adrian
,
R.
,
1991
, “
High Resolution Measurement of Turbulent Structure in a Channel With Particle Image Velocimetry
,”
Exp. Fluids
,
10
(
6
), pp.
301
312
.
21.
Elghobashi
,
S.
,
1994
, “
On Predicting Particle-Laden Turbulent Flows
,”
Appl. Sci. Res.
,
52
(
4
), pp.
309
329
.
22.
Zhao
,
L. H.
,
Marchioli
,
C.
, and
Andersson
,
H. I.
,
2012
, “
Stokes Number Effects on Particle Slip Velocity in Wall-Bounded Turbulence and Implications for Dispersion Models
,”
Phys. Fluids
,
24
(
2
), p.
021705
.
23.
Adrian
,
R. J.
, and
Westerweel
,
J.
,
2010
,
Particle Image Velocimetry
,
Cambridge University Press
, New York.
24.
Raffel
,
M.
,
Willert
,
C. E.
, and
Kompenhans
,
J.
,
1998
,
Particle Image Velocimetry: A Practical Guide; With 24 Tables
,
Springer
, Berlin.
25.
Stern
,
F.
,
Muste
,
M.
, and
Beninati
,
M.
,
1999
, “
Summary of Experimental Uncertainty Assessment Methodology With Example
,” College of Engineering, Iowa Institute of Hydraulic Research, Iowa, Technical Report No. 406.
26.
Tsuei
,
L.
, and
Savaş
,
Ö.
,
2000
, “
Treatment of Interfaces in Particle Image Velocimetry
,”
Exp. Fluids
,
29
(
3
), pp.
203
214
.
27.
Pope
,
S. B.
,
2000
,
Turbulent Flows
,
Cambridge University Press
, New York.
28.
Ljus
,
C.
,
Johansson
,
B.
, and,
Almstedt
,
A.
,
2002
, “
Turbulence Modification by Particles in a Horizontal Pipe Flow
,”
Int. J. Multiphase Flow
,
28
(
7
), pp.
1075
1090
.
29.
Lain
,
S.
,
Sommmerfeld
,
M.
, and,
Kussin
,
J.
,
2002
, “
Experimental Studies and Modelling of Four-Way Coupling in Particle-Laden Horizontal Channel Flow
,”
Int. J. Heat Fluid Flow
,
23
(
5
), pp.
647
656
.
30.
Reinhardt
,
Y.
, and
Kleiser
,
L.
,
2015
, “
Validation of Particle-Laden Turbulent Flow Simulations Including Turbulence Modulation
,”
ASME J. Fluids Eng.
,
137
(
7
), p.
071303
.
31.
Meyer
,
D. W.
,
2012
, “
Modelling of Turbulence Modulation in Particle-or Droplet-Laden Flows
,”
J. Fluid Mech.
,
706
, pp.
251
273
.
32.
Eaton
,
J. K.
,
2009
, “
Two-Way Coupled Turbulence Simulations of Gas-Particle Flows Using Point-Particle Tracking
,”
Int. J. Multiphase Flow
,
35
(
9
), pp.
792
800
.
33.
Mando
,
M.
,
Lightstone
,
M. F.
,
Rosendahl
,
L.
,
Yin
,
C.
, and
Sorensen
,
H.
,
2009
, “
Turbulence Modulation in Dilute Particle-Laden Flow
,”
Int. J. Heat Fluid Flow
,
30
(
2
), pp.
331
338
.
34.
Capecelatro
,
J.
, and
Desjardins
,
O.
,
2015
, “
Mass Loading Effects on Turbulence Modulation by Particle Clustering in Dilute and Moderately Dilute Channel Flows
,”
ASME J. Fluids Eng.
,
137
(
11
), p.
111102
.
35.
Elgobashi
,
S.
,
Balachandar
,
S.
, and
Prosperetti
,
A.
,
2006
, “
An Updated Classification Map of Particle-Laden Turbulent Flows
,”
IUTAM
Symposium on Computational Approaches to Multiphase Flow
, Oct. 4–7, Vol.
81
, pp.
3
10
.
36.
Paris
,
A. D.
,
2001
, “
Turbulence Attenuation in a Particle-Laden Channel Flow
,”
Doctoral thesis
, Mechanical Engineering Department/Stanford University, Stanford, CA.
37.
Tsuji
,
Y.
,
Morikawa
,
Y.
, and
Shiomi
,
H.
,
1984
, “
LDV Measurements of an Air-Solid Two-Phase Flow in a Vertical Pipe
,”
J. Fluid Mech.
,
139
, pp.
417
434
.
38.
Gore
,
R. A.
,
Crowe
,
C. T.
, and
Gore
,
R. A.
,
1991
, “
Modulation of Turbulence by a Dispersed Phase
,”
ASME J. Fluids Eng.
,
113
(
2
), pp.
304
307
.
39.
Durst
,
F.
,
Kikura
,
H.
, and
Lekakis
,
I.
,
1996
, “
Wall Shear Stress Determination From Near-Wall Mean Velocity Data in Turbulent Pipe and Channel Flows
,”
Exp. Fluids
,
20
(
6
), pp.
417
428
.
40.
Antonia
,
R.
,
Teitel
,
M.
, and
Kim
,
J.
,
1992
, “
Low-Reynolds-Number Effects in a Fully Developed Turbulent Channel Flow
,”
J. Fluid Mech.
,
236
, pp.
579
605
.
41.
Khoo
,
B.
,
Chew
,
Y.
, and
Teo
,
C.
,
2000
, “
On Near-Wall Hot-Wire Measurements
,”
Exp. Fluids
,
29
(
5
), pp.
448
460
.
42.
Krogstad
,
P.
,
Antonia
,
R.
, and
Browne
,
L.
,
1992
, “
Comparison Between Rough-and Smooth-Wall Turbulent Boundary Layers
,”
J. Fluid Mech.
,
245
, pp.
599
617
.
43.
Wallace
,
J. M.
,
Eckelmann
,
H.
, and
Brodkey
,
R. S.
,
1972
, “
The Wall Region in Turbulent Shear Flow
,”
J. Fluid Mech.
,
54
(
01
), pp.
39
48
.
44.
Willmarth
,
W.
, and
Lu
,
S.
,
1972
, “
Structure of the Reynolds Stress Near the Wall
,”
J. Fluid Mech.
,
55
(
01
), pp.
65
92
.
You do not currently have access to this content.