In ultrasonic cavitation, iridescent rings always occur around erosion pits on steel surface. These colorful halos can reflect the experienced temperature of the steel surface, but the reason for their formation is controversial. In this study, the development of an erosion pit and the iridescent ring around it on stainless steel (1Cr18Ni9Ti) surface was numerically investigated based on the energy transformation theory. The results revealed that the experienced temperature of ring areas with the shape of three-dimensional hemisphere could reach as high as 1685 K, and the position of material's highest temperature was exactly at the position of stress concentration.

References

References
1.
Yang
,
Q.
,
Zhang
,
J. M.
, and
Dai
,
G. Q.
,
2004
, “
Summary of Cavitation Formation Mechanism and Scale Effect
,”
Water Power
,
30
(
4
), pp.
56
59
.
2.
Hammitt
,
F. G.
, and
Rogers
,
D. O.
,
1970
, “
Effects of Pressure and Temperature Variation in Vibratory Cavitation Damage Test
,”
J. Mech. Eng. Sci.
,
12
(
6
), pp.
432
439
.
3.
Kwok
,
C. T.
,
Man
,
H. C.
, and
Leung
,
L. K.
,
1997
, “
Effect of Temperature, PH and Sulphide on the Cavitation Erosion Behaviour of Super Duplex Stainless Steel
,”
Wear
,
211
(
1
), pp.
84
93
.
4.
Chen
,
Z. Y.
,
2007
, “
The Role of Oxidization in Cavitation Damage
,”
J. Harbin Eng. Univ.
,
28
(
9
), pp.
1056
1059
.
5.
Chen
,
H. S.
,
Li
,
J.
, and
Liu
,
S. H.
,
2009
, “
Thermal Effect at the Incipient Stage of Cavitation Erosion on a Stainless Steel in Ultrasonic Vibration Cavitation
,”
ASME J. Fluids Eng.
,
131
(
2
), p.
024501
.
6.
Wang
,
Z. C.
,
Zhang
,
Y.
, and
Zhang
,
X. Q.
,
2001
, “
Thermal Effect of Cavitation Erosion
,”
Chin. J. Mater. Res.
,
15
(
6
), pp.
287
290
.
7.
Chen
,
H. S.
, and
Li
,
J.
,
2009
, “
A Ring Area Formed Around the Erosion Pit on 1Cr18Ni9Ti Stainless Steel Surface in Incipient Cavitation Erosion
,”
Wear
,
266
(
7–8
), pp.
884
887
.
8.
Wu
,
C. C.
, and
Roberts
,
P. H.
,
1993
, “
Shock-Wave Propagation in a Sonoluminescing Gas Bubble
,”
Phys. Rev. Lett.
,
70
(
22
), pp.
3424
3427
.
9.
Ying
,
C. F.
, and
An
,
Y.
,
2002
, “
High Temperature and High Pressure Distribution in Gas Bubbles Generated by Sound Cavitation
,”
Sci. China Ser. A. Math. Phys. Astron.
,
32
(
4
), pp.
305
313
.
10.
Chen
,
H. S.
,
2010
, “
Iridescent Rings Around Cavitation Erosion Pits on Surface of Mild Carbon Steel
,”
Wear
,
269
(
7
), pp.
602
606
.
11.
Knapp
,
R. T.
,
Daily
,
J. W.
, and
Hammit
,
F. G.
,
1970
,
Cavitation
,
McGraw-Hill
,
New York
.
12.
Plesset
,
M. S.
, and
Chapman
,
R. B.
,
1971
, “
Collapse of an Initially Spherical Vapour Cavity in the Neighbourhood of a Solid Boundary
,”
J. Fluid Mech.
,
47
(
2
), pp.
283
290
.
13.
Momma
,
T.
, and
Lichtarowicz
,
A.
,
1995
, “
A Study of Pressures and Erosion Produced by Collapsing Cavitation
,”
Wear
,
186–187
(
2
), pp.
425
436
.
14.
Shima
,
A.
,
Takayama
,
K.
,
Tomita
,
Y.
, and
Ohsawa
,
N.
,
1983
, “
Mechanism of Impact Pressure Generation From Spark-Generated Bubble Collapse Near a Wall
,”
AIAA J.
,
21
(
1
), pp.
55
59
.
15.
Wang
,
J.
,
Martin
,
P. M.
,
Liu
,
H. L.
,
Brane
,
S.
, and
Dular
,
M.
,
2015
, “
Combined Numerical and Experimental Investigation of the Cavitation Erosion Process
,”
ASME J. Fluids Eng.
,
137
(
5
), p.
051302
.
16.
Luo
,
J.
,
Li
,
J.
, and
Dong
,
G. N.
,
2008
, “
Two-Dimensional Simulation of the Collapse of Vapor Bubbles Near a Wall
,”
ASME J. Fluids Eng.
,
130
(
9
), p.
091301
.
17.
Taylor
,
G. I.
, and
Quinney
,
H.
,
1934
, “
The Latent Energy Remaining in a Metal After Cold Working
,”
Proc. R. Soc. London, Ser. A
,
143
(
849
), pp.
307
326
.
18.
Wheeler
,
W. H.
,
1956
, “
Mechanism of Cavitation Erosion
,”
National Physical Laboratory Symposium
, Paper No. 21.
19.
Tomita
,
Y.
, and
Shima
,
A.
,
1986
, “
Mechanisms of Impulsive Pressure Generation and Damage Pit Formation by Bubble Collapse
,”
J. Fluid Mech.
,
169
, pp.
535
564
.
20.
Lambrakos
,
S. G.
, and
Tran
,
N. E.
,
2008
, “
Inverse Analysis of Cavitation Impact Phenomena on Structures
,”
J. Mater. Eng. Perform.
,
17
(
2
), pp.
202
209
.
21.
Obara
,
T.
,
Bourne
,
N. K.
, and
Field
,
J. E.
,
1995
, “
Liquid-Jet Impact on Liquid and Solid Surfaces
,”
Wear
,
186–187
, pp.
388
394
.
22.
Li
,
J.
, and
Chen
,
H. S.
,
2008
, “
Numerical Simulation of Micro Bubble Collapse Near Solid Wall in Fluent Environment
,”
Tribol.
,
28
(
4
), pp.
311
315
.
23.
Luo
,
J.
,
2008
, “
Study on Cavitation Erosion Behavior and Ultrasonic Cavitation Characteristic
,” Ph.D. thesis, Academy of Machinery Science and Technology, Wuhan, China.
24.
Burdin
,
F.
,
Tsochatzidis
,
N. A.
,
Guiraud
,
P.
,
Wilhelm
,
A. M.
, and
Delmas
,
H.
,
1999
, “
Characterisation of the Acoustic Cavitation Cloud by Two Laser Techniques
,”
Ultrason. Sonochem.
,
6
(
1
), pp.
43
51
.
25.
Dular
,
M.
,
Stoffel
,
B.
, and
Sirok
,
B.
,
2006
, “
Development of a Cavitation Erosion Model
,”
Wear
,
261
(
5
), pp.
642
655
.
26.
Ni
,
B. Y.
,
Zhang
,
A. M.
, and
Wu
,
G. X.
,
2015
, “
Numerical and Experimental Study of Bubble Impact on a Solid Wall
,”
ASME J. Fluids Eng.
,
137
(
3
), p.
031206
.
27.
Chen
,
H. S.
, and
Liu
,
S. H.
,
2009
, “
Inelastic Damages by Stress Wave on Steel Surface at the Incubation Stage of Vibration Cavitation Erosion
,”
Wear
,
266
(
1–2
), pp.
69
75
.
28.
Li
,
S. X.
,
Huang
,
Y.
, and
Shi
,
C. X.
,
1985
, “
The Finite Element Analysis of Heat Field of Metal Sheet During Elastic–Plastic Deformation
,”
Acta Metall Sin
,
21
(
1
), pp.
101
109
.
29.
Fortes-Patella
,
R.
,
Challier
,
G.
,
Reboud
,
J. L.
, and
Archer
,
A.
,
2013
, “
Energy Balance in Cavitation Erosion: From Bubble Collapse to Indentation of Material Surface
,”
ASME J. Fluids Eng.
,
135
(
1
), p.
011303
.
30.
Li
,
J.
,
Wu
,
B.
, and
Chen
,
H.
,
2013
, “
Formation and Development of Iridescent Rings Around Cavitation Erosion Pits
,”
Tribol. Lett.
,
52
(
3
), pp.
495
500
.
31.
Okada
,
T.
,
Iwai
,
Y.
,
Hattori
,
S.
, and
Tanimura
,
N.
,
1995
, “
Relation Between Impact Load and the Damage Produced by Cavitation Bubble Collapse
,”
Wear
,
184
(
2
), pp.
231
239
.
32.
Kennedy
,
C. F.
, and
Field
,
J. E.
,
2000
, “
Damage Threshold Velocities for Liquid Impact
,”
J. Mater. Sci.
,
35
(
21
), pp.
5331
5339
.
33.
Lin
,
L.
,
Zhi
,
X. D.
,
Fan
,
F.
,
Meng
,
S. J.
, and
Su
,
J. J.
,
2014
, “
Determination of Parameters of Johnson-Cook Models of Q235B steel
,”
J. Vib. Shock
,
33
(
9
), pp.
153
158
.
34.
Coulson
,
J. M.
, and
Richardson
,
J. F.
,
1965
,
Chemical Engineering
,
2nd ed.
, Vol.
1
,
Pergamon
,
Oxford
, p.
88
.
35.
Incropera
,
F. P.
, and
DeWitt
,
D. P.
,
2010
,
Fundamentals of Heat and Mass Transfer
,
4th ed.
,
Wiley
,
New York
, p.
493
.
You do not currently have access to this content.