In ultrasonic cavitation, iridescent rings always occur around erosion pits on steel surface. These colorful halos can reflect the experienced temperature of the steel surface, but the reason for their formation is controversial. In this study, the development of an erosion pit and the iridescent ring around it on stainless steel (1Cr18Ni9Ti) surface was numerically investigated based on the energy transformation theory. The results revealed that the experienced temperature of ring areas with the shape of three-dimensional hemisphere could reach as high as 1685 K, and the position of material's highest temperature was exactly at the position of stress concentration.
Issue Section:
Flows in Complex Systems
References
1.
Yang
, Q.
, Zhang
, J. M.
, and Dai
, G. Q.
, 2004
, “Summary of Cavitation Formation Mechanism and Scale Effect
,” Water Power
, 30
(4
), pp. 56
–59
.2.
Hammitt
, F. G.
, and Rogers
, D. O.
, 1970
, “Effects of Pressure and Temperature Variation in Vibratory Cavitation Damage Test
,” J. Mech. Eng. Sci.
, 12
(6
), pp. 432
–439
.3.
Kwok
, C. T.
, Man
, H. C.
, and Leung
, L. K.
, 1997
, “Effect of Temperature, PH and Sulphide on the Cavitation Erosion Behaviour of Super Duplex Stainless Steel
,” Wear
, 211
(1
), pp. 84
–93
.4.
Chen
, Z. Y.
, 2007
, “The Role of Oxidization in Cavitation Damage
,” J. Harbin Eng. Univ.
, 28
(9
), pp. 1056
–1059
.5.
Chen
, H. S.
, Li
, J.
, and Liu
, S. H.
, 2009
, “Thermal Effect at the Incipient Stage of Cavitation Erosion on a Stainless Steel in Ultrasonic Vibration Cavitation
,” ASME J. Fluids Eng.
, 131
(2
), p. 024501
.6.
Wang
, Z. C.
, Zhang
, Y.
, and Zhang
, X. Q.
, 2001
, “Thermal Effect of Cavitation Erosion
,” Chin. J. Mater. Res.
, 15
(6
), pp. 287
–290
.7.
Chen
, H. S.
, and Li
, J.
, 2009
, “A Ring Area Formed Around the Erosion Pit on 1Cr18Ni9Ti Stainless Steel Surface in Incipient Cavitation Erosion
,” Wear
, 266
(7–8
), pp. 884
–887
.8.
Wu
, C. C.
, and Roberts
, P. H.
, 1993
, “Shock-Wave Propagation in a Sonoluminescing Gas Bubble
,” Phys. Rev. Lett.
, 70
(22
), pp. 3424
–3427
.9.
Ying
, C. F.
, and An
, Y.
, 2002
, “High Temperature and High Pressure Distribution in Gas Bubbles Generated by Sound Cavitation
,” Sci. China Ser. A. Math. Phys. Astron.
, 32
(4
), pp. 305
–313
.10.
Chen
, H. S.
, 2010
, “Iridescent Rings Around Cavitation Erosion Pits on Surface of Mild Carbon Steel
,” Wear
, 269
(7
), pp. 602
–606
.11.
Knapp
, R. T.
, Daily
, J. W.
, and Hammit
, F. G.
, 1970
, Cavitation
, McGraw-Hill
, New York
.12.
Plesset
, M. S.
, and Chapman
, R. B.
, 1971
, “Collapse of an Initially Spherical Vapour Cavity in the Neighbourhood of a Solid Boundary
,” J. Fluid Mech.
, 47
(2
), pp. 283
–290
.13.
Momma
, T.
, and Lichtarowicz
, A.
, 1995
, “A Study of Pressures and Erosion Produced by Collapsing Cavitation
,” Wear
, 186–187
(2
), pp. 425
–436
.14.
Shima
, A.
, Takayama
, K.
, Tomita
, Y.
, and Ohsawa
, N.
, 1983
, “Mechanism of Impact Pressure Generation From Spark-Generated Bubble Collapse Near a Wall
,” AIAA J.
, 21
(1
), pp. 55
–59
.15.
Wang
, J.
, Martin
, P. M.
, Liu
, H. L.
, Brane
, S.
, and Dular
, M.
, 2015
, “Combined Numerical and Experimental Investigation of the Cavitation Erosion Process
,” ASME J. Fluids Eng.
, 137
(5
), p. 051302
.16.
Luo
, J.
, Li
, J.
, and Dong
, G. N.
, 2008
, “Two-Dimensional Simulation of the Collapse of Vapor Bubbles Near a Wall
,” ASME J. Fluids Eng.
, 130
(9
), p. 091301
.17.
Taylor
, G. I.
, and Quinney
, H.
, 1934
, “The Latent Energy Remaining in a Metal After Cold Working
,” Proc. R. Soc. London, Ser. A
, 143
(849
), pp. 307
–326
.18.
Wheeler
, W. H.
, 1956
, “Mechanism of Cavitation Erosion
,” National Physical Laboratory Symposium
, Paper No. 21.19.
Tomita
, Y.
, and Shima
, A.
, 1986
, “Mechanisms of Impulsive Pressure Generation and Damage Pit Formation by Bubble Collapse
,” J. Fluid Mech.
, 169
, pp. 535
–564
.20.
Lambrakos
, S. G.
, and Tran
, N. E.
, 2008
, “Inverse Analysis of Cavitation Impact Phenomena on Structures
,” J. Mater. Eng. Perform.
, 17
(2
), pp. 202
–209
.21.
Obara
, T.
, Bourne
, N. K.
, and Field
, J. E.
, 1995
, “Liquid-Jet Impact on Liquid and Solid Surfaces
,” Wear
, 186–187
, pp. 388
–394
.22.
Li
, J.
, and Chen
, H. S.
, 2008
, “Numerical Simulation of Micro Bubble Collapse Near Solid Wall in Fluent Environment
,” Tribol.
, 28
(4
), pp. 311
–315
.23.
Luo
, J.
, 2008
, “Study on Cavitation Erosion Behavior and Ultrasonic Cavitation Characteristic
,” Ph.D. thesis, Academy of Machinery Science and Technology, Wuhan, China.24.
Burdin
, F.
, Tsochatzidis
, N. A.
, Guiraud
, P.
, Wilhelm
, A. M.
, and Delmas
, H.
, 1999
, “Characterisation of the Acoustic Cavitation Cloud by Two Laser Techniques
,” Ultrason. Sonochem.
, 6
(1
), pp. 43
–51
.25.
Dular
, M.
, Stoffel
, B.
, and Sirok
, B.
, 2006
, “Development of a Cavitation Erosion Model
,” Wear
, 261
(5
), pp. 642
–655
.26.
Ni
, B. Y.
, Zhang
, A. M.
, and Wu
, G. X.
, 2015
, “Numerical and Experimental Study of Bubble Impact on a Solid Wall
,” ASME J. Fluids Eng.
, 137
(3
), p. 031206
.27.
Chen
, H. S.
, and Liu
, S. H.
, 2009
, “Inelastic Damages by Stress Wave on Steel Surface at the Incubation Stage of Vibration Cavitation Erosion
,” Wear
, 266
(1–2
), pp. 69
–75
.28.
Li
, S. X.
, Huang
, Y.
, and Shi
, C. X.
, 1985
, “The Finite Element Analysis of Heat Field of Metal Sheet During Elastic–Plastic Deformation
,” Acta Metall Sin
, 21
(1
), pp. 101
–109
.29.
Fortes-Patella
, R.
, Challier
, G.
, Reboud
, J. L.
, and Archer
, A.
, 2013
, “Energy Balance in Cavitation Erosion: From Bubble Collapse to Indentation of Material Surface
,” ASME J. Fluids Eng.
, 135
(1
), p. 011303
.30.
Li
, J.
, Wu
, B.
, and Chen
, H.
, 2013
, “Formation and Development of Iridescent Rings Around Cavitation Erosion Pits
,” Tribol. Lett.
, 52
(3
), pp. 495
–500
.31.
Okada
, T.
, Iwai
, Y.
, Hattori
, S.
, and Tanimura
, N.
, 1995
, “Relation Between Impact Load and the Damage Produced by Cavitation Bubble Collapse
,” Wear
, 184
(2
), pp. 231
–239
.32.
Kennedy
, C. F.
, and Field
, J. E.
, 2000
, “Damage Threshold Velocities for Liquid Impact
,” J. Mater. Sci.
, 35
(21
), pp. 5331
–5339
.33.
Lin
, L.
, Zhi
, X. D.
, Fan
, F.
, Meng
, S. J.
, and Su
, J. J.
, 2014
, “Determination of Parameters of Johnson-Cook Models of Q235B steel
,” J. Vib. Shock
, 33
(9
), pp. 153
–158
.34.
Coulson
, J. M.
, and Richardson
, J. F.
, 1965
, Chemical Engineering
, 2nd ed., Vol. 1
, Pergamon
, Oxford
, p. 88
.35.
Incropera
, F. P.
, and DeWitt
, D. P.
, 2010
, Fundamentals of Heat and Mass Transfer
, 4th ed., Wiley
, New York
, p. 493
.Copyright © 2016 by ASME
You do not currently have access to this content.