Analytical expressions for interfacial pressure coefficients are obtained based on the geometry of the bubbles occurring in two-phase flows. It is known that the shape of the bubbles affects the virtual mass and interfacial pressure coefficients, which in turn determines the cutoff void fraction for the well-posedness of two-fluid model (TFM). The coefficient used in the interfacial pressure difference correlation is derived assuming potential flow around a perfect sphere. In reality, the bubbles seen in two-phase flows get deformed, and hence, it is required to estimate the coefficients for nonspherical geometries. Oblate and prolate ellipsoids are considered, and their respective coefficients are determined. It is seen that the well-posedness limit of the TFM is determined by the combination of virtual mass and interfacial pressure coefficient used. The effect of flow separation on the coefficient values is also analyzed.

References

References
1.
Pauchon
,
C.
, and
Banerjee
,
S.
,
1986
, “
Interphase Momentum Interaction Effects in the Averaged Multifield Model—Part 1: Void Propagation in Bubbly Flows
,”
Int. J. Multiphase Flow
,
12
(
4
), pp.
559
573
.
2.
Stuhmiller
,
J. H.
,
1977
, “
The Influence of Interfacial Pressure Forces on the Character of Two-Phase Flow Model Equations
,”
Int. J. Multiphase Flow
,
3
(
6
), pp.
551
560
.
3.
Drew
,
D. A.
, and
Passman
,
S. L.
,
1998
,
Theory of Multicomponent Fluids
,
Springer-Verlag
,
New York
.
4.
Zaruba
,
A.
,
Krepper
,
E.
,
Prasser
,
H.-M.
, and
Schliecher
,
E.
,
2005
, “
Measurement of Bubble Velocity Profiles and Turbulent Diffusion Coefficients of the Gaseous Phase in Rectangular Bubble Column Using Image Processing
,”
Exp. Therm. Fluid Sci.
,
29
(
7
), pp.
851
860
.
5.
Lucas
,
D.
,
Prasser
,
H.-M.
, and
Manera
,
A.
,
2005
, “
Influence of the Lift Force on the Stability of a Bubble Column
,”
Chem. Eng. Sci.
,
60
(
13
), pp.
3609
3619
.
6.
Enwald
,
H.
,
Peirano
,
E.
, and
Almstedt
,
A. E.
,
1996
, “
Eulerian Two-Phase Flow Theory Applied to Fluidization
,”
Int. J. Multiphase Flow
,
22
, pp.
21
66
.
7.
Saffman
,
P. G.
,
1956
, “
On the Rise of Small Air Bubbles in Water
,”
J. Fluid Mech.
,
1
(03), pp.
249
275
.
8.
Mercier
,
J.
,
Lyrio
,
A.
, and
Forslund
,
R.
,
1973
, “
Three-Dimensional Study of the Nonrectilinear Trajectory of Air Bubbles Rising in Water
,”
ASME J. Appl. Mech.
,
40
(
3
), pp.
650
654
.
9.
Lunde
,
K.
, and
Perkins
,
R.
,
1998
, “
Shape Oscillations of Rising Bubbles
,”
Appl. Sci. Res.
,
58
(1–4), pp.
387
408
.
10.
Brucker
,
C.
,
1999
, “
Structure and Dynamics of the Wake of Bubbles and Its Relevance for Bubble Interaction
,”
Phys. Fluids
,
11
(
7
), pp.
1781
1796
.
11.
Lance
,
M.
, and
Bataille
,
J.
,
1991
, “
Turbulence in the Liquid Phase of a Uniform Bubbly Air-Water Flow
,”
J. Fluid Mech.
,
222
, pp.
95
118
.
12.
Lamb
,
H.
,
1932
,
Hydrodynamics
,
Dover
,
New York
.
13.
Clift
,
R.
,
Grace
,
J. R.
, and
Weber
,
M. E.
,
1978
,
Bubble, Drops and Particles
,
Academic Press
,
New York
.
14.
Pauchon
,
C.
, and
Banerjee
,
S.
,
1988
, “
Interphase Momentum Interaction Effects in the Averaged Multifield Model—Part II: Kinematic Waves and Interfacial Drag in Bubbly Flows
,”
Int. J. Multiphase Flow
,
14
(
3
), pp.
253
264
.
15.
Vaidheeswaran
,
A.
,
2015
, “
Well-Posedness and Convergence of CFD Two-Fluid Model for Bubbly Flows
,”
Ph.D. dissertation
, Purdue University, West Lafayette, IN.
16.
Ishii
,
M.
,
1975
,
Thermo-Fluid Dynamic Theory of Two-Phase Flow
,
Eyrolles
,
Paris
.
17.
Vernier
,
P.
, and
Delhaye
,
J. M.
,
1968
, “
General Two-Phase Flow Equations Applied to the Thermohydrodynamics of Boiling Nuclear Reactors
,”
Energ. Primaire
,
4
, pp.
5
36
.
18.
Ishii
,
M.
, and
Hibiki
,
T.
,
2011
,
Thermo-Fluid Dynamics of Two-Phase Flow
, Vol.
2
,
Springer
,
New York
.
19.
Drew
,
D. A.
, and
Lahey
,
R. T.
, Jr.
,
1987
, “
The Virtual Mass and Lift Force on a Sphere in Rotating and Straining Inviscid Fluid
,”
Int. J. Multiphase Flow
,
13
(
1
), pp.
113
121
.
20.
Tokuhiro
,
A.
,
Maekawa
,
M.
,
Iizuka
,
K.
,
Hishida
,
K.
, and
Maeda
,
M.
,
1998
, “
Turbulent Flow Past a Bubble and an Ellipsoid Using Shadow-Image and PIV Techniques
,”
Int. J. Multiphase Flow
,
24
(
8
), pp.
1383
1406
.
21.
Choi
,
H. M.
,
Kurihara
,
T.
,
Monji
,
H.
, and
Matsui
,
G.
,
2002
, “
Measurement of Particle/Bubble Motion and Turbulence Around it by Hybrid PIV
,”
Flow Meas. Instrum.
,
12
, pp.
421
428
.
22.
Reddy Vanga
,
B. N.
,
2004
, “
Experimental Investigation and Two-Fluid Model Large Eddy Simulations of Re-Circulating Turbulent Flow in Bubble Columns
,”
Ph.D. dissertation
, Purdue University, West Lafayette, IN.
23.
Haley
,
T.
,
Drew
,
D. A.
, and
Lahey
,
R. T.
, Jr.
,
1991
, “
An Analysis of the Eigen Values of Bubbly Two-Phase Flows
,”
Chem. Eng. Commun.
,
106
(
1
), pp.
93
117
.
24.
Park
,
J. W.
,
Drew
,
D. A.
, and
Lahey
,
R. T.
, Jr.
,
1998
, “
The Analysis of Void Wave Propagation in Adiabatic Monodispersed Bubbly Two-Phase Flows Using an Ensemble-Averaged Two-Fluid Model
,”
Int. J. Multiphase Flow
,
24
(7), pp.
1205
1244
.
25.
Vaidheeswaran
,
A.
,
Fullmer
,
W.
, and
Lopez de Bertodano
,
M.
,
2015
, “
On Well-Posedness and Stability of the Two-Fluid Model for Vertical Bubbly Flows
,”
16th International Topical Meeting on Nuclear Reactor Thermal Hydraulics
, Chicago, IL.
You do not currently have access to this content.