The flow and decay characteristics of submerged jets of shear-thinning fluids with yield stress are studied. Numerical solutions to the governing mass and momentum conservation equations, along with the Herschel–Bulkley rheological model, are obtained using a finite-difference scheme. A parametric study is implemented to investigate the influence of flow inertia and rheology over the following range of parameters: Reynolds number, 50 ≤ Re ≤ 200; yield number, 0 ≤ Y ≤ 1; and shear-thinning index, 0.6 ≤ n ≤ 1. A large recirculation region exists for Newtonian and shear-thinning non-Newtonian jets. However, the extent and strength of the recirculation region substantially diminish with the yield number and, to a lesser extent, when the shear-thinning index is reduced from 1 to 0.6. Increasing the yield number beyond a critical value eliminates flow recirculation. The centerline velocity and momentum decay of shear-thinning jets with yield stress, in general, increase with the yield number. Velocity- and momentum-based depths of penetration, DPU, and DPM, respectively, are introduced and presented. DPU and DPM are the downstream locations corresponding to 90% decay in the initial centerline velocity and jet momentum, respectively. A substantial decrease in DPU and DPM is observed when the shear-thinning index is reduced from 1 to 0.6 for Y = 0. The presence of yield stress significantly reduces both DPU and DPM of submerged jets. The impact of shear-thinning on the decay characteristics of the jet is more pronounced at low yield numbers.

References

1.
Shekarriz
,
A.
,
Hammad
,
K. J.
, and
Powell
,
M. R.
,
1997
, “
Evaluation of Scaling Correlations for Mobilization of Double-Shell Tank Waste
,” U.S. Department of Energy by the Pacific Northwest National Laboratory, Richland, WA,
Report No. PNNL-11737
.
2.
Gauglitz
,
P. A.
,
Wells
,
B. E.
,
Bamberger
,
J. A.
,
Fort
,
J. A.
,
Chun
,
J.
, and
Jenks
,
J. J.
,
2010
, “
The Role of Cohesive Particle Interactions on Solids Uniformity and Mobilization During Jet Mixing: Testing Recommendations
,” U.S. Department of Energy by the Pacific Northwest National Laboratory, Richland, WA,
Report No. PNNL-19245
.
3.
Chhabra
,
R. P.
, and
Richardson
,
J. F.
,
2008
,
Non-Newtonian Flow and Applied Rheology: Engineering Applications
, 2nd ed.,
Butterworth-Heinemann
,
Oxford, UK
.
4.
Milanovic
,
I. M.
, and
Hammad
,
K. J.
,
2010
, “
PIV Study of the Near-Field Region of a Turbulent Round Jet
,”
ASME
Paper No. FEDSM-ICNMM2010-31139.
5.
Landfried
,
D. T.
,
Jana
,
A.
, and
Kimber
,
M. L.
,
2015
, “
Characterization of the Behaviour of Confined Laminar Round Jets
,”
ASME J. Fluids Eng.
,
137
(
3
), p.
034501
.
6.
Bird
,
R. B.
,
Dai
,
G. C.
, and
Yarusso
,
B. J.
,
1983
, “
The Rheology and Flow of Viscoplastic Materials
,”
Rev. Chem. Eng.
,
1
(
1
), pp.
1
70
.
7.
Ellwood
,
K. R. J.
,
Georgiou
,
G. C.
,
Papanastasiou
,
T. C.
, and
Wilkes
,
J. O.
,
1990
, “
Laminar Jets of Bingham Plastic Liquids
,”
J. Rheol.
,
34
(
6
), pp.
787
812
.
8.
Papanastasiou
,
T. C.
,
1987
, “
Flow of Materials With Yield
,”
J. Rheol.
,
31
(
5
), pp.
385
403
.
9.
Serth
,
R. W.
, and
Mayaguez
,
P. R.
,
1972
, “
The Axisymmetric Free Laminar Jet of a Power-Law Fluid
,”
J. Appl. Math. Phys.
,
23
(
1
), pp.
131
138
.
10.
Mitwally
,
E. M.
,
1978
, “
Solutions of Laminar Jet Flow Problems for Non-Newtonian Power-Law Fluids
,”
ASME J. Fluids Eng.
,
100
(
3
), pp.
363
366
.
11.
Kumar
,
K. R.
,
Rankin
,
G. W.
, and
Sridhar
,
K.
,
1984
, “
Laminar Length of a Non-Newtonian Fluid Jet
,”
J. Non-Newtonian Fluid Mech.
,
15
(
1
), pp.
13
27
.
12.
Jordan
,
C.
,
Rankin
,
G. W.
, and
Sridhar
,
K.
,
1992
, “
A Study of Submerged Pseudoplastic Laminar Jets
,”
J. Non-Newtonian Fluid Mech.
,
41
(
3
), pp.
323
337
.
13.
Shekarriz
,
A.
, and
Hammad
,
K. J.
,
1997
, “
Submerged Jet Flows of Newtonian and Pseudoplastic Non-Newtonian Fluids
,”
Album Visualization
,
14
, pp.
23
24
.
14.
Jafri
,
I. H.
, and
Vradis
,
G. C.
,
1998
, “
The Evolution of Laminar Jets of Herschel-Bulkley Fluids
,”
Int. J. Heat Mass Transfer
,
41
(
22
), pp.
3575
3588
.
15.
Hammad
,
K. J.
,
2000
, “
Effect of Hydrodynamic Conditions on Heat Transfer in a Complex Viscoplastic Flow Field
,”
Int. J. Heat Mass Transfer
,
43
(
6
), pp.
945
962
.
16.
Hammad
,
K. J.
,
2014
, “
Velocity and Momentum Decay Characteristics of a Submerged Viscoplastic Jet
,”
ASME J. Fluids Eng.
,
136
(
2
), p.
021205
.
17.
Hammad
,
K. J.
,
2014
, “
Visualization of an Annular Viscoplastic Jet
,”
J. Visual.
,
17
(
1
), pp.
5
16
.
18.
Balmforth
,
N. J.
,
Frigaard
, I
. A.
, and
Ovarlez
,
G.
,
2014
, “
Yielding to Stress: Recent Developments in Viscoplastic Fluid Mechanics
,”
Annu. Rev. Fluid Mech.
,
46
(
1
), pp.
121
146
.
19.
Vradis
,
G. C.
, and
Hammad
,
K. J.
,
1998
, “
Strongly Coupled Block-Implicit Solution Technique for Non-Newtonian Convective Heat Transfer Problems
,”
Numer. Heat Transfer, Part B
,
33
(
1
), pp.
79
97
.
20.
Hammad
,
K. J.
,
2013
, “
Hemorheology and the Flow Behavior in a Separated Flow Region
,”
ASME
Paper No. IMECE2013-62548.
21.
Hammad
,
K. J.
,
Otugen
,
M. V.
, and
Arik
,
E. B.
,
1999
, “
A PIV Study of the Laminar Axisymmetric Sudden Expansion Flow
,”
Exp. Fluids
,
26
(
3
), pp.
266
272
.
22.
Hammad
,
K. J.
,
Otugen
,
M. V.
,
Vradis
,
G. C.
, and
Arik
,
E. B.
,
1999
, “
Laminar Flow of a Nonlinear Viscoplastic Fluid Through an Axisymmetric Sudden Expansion
,”
ASME J. Fluids Eng.
,
121
(
2
), pp.
488
496
.
23.
Hammad
,
K. J.
,
Wang
,
F.
,
Ötügen
,
M. V.
, and
Vradis
,
G. C.
,
1997
, “
Suddenly Expanding Axisymmetric Flow of a Yield Stress Fluid
,”
Album Visualization
,
14
, pp.
17
18
.
24.
Hammad
,
K. J.
,
Vradis
,
G. C.
, and
Ötügen
,
M. V.
,
2001
, “
Laminar Flow of a Herschel–Bulkley Fluid Over an Axisymmetric Sudden Expansion
,”
ASME J. Fluids Eng.
,
123
(
3
), pp.
588
594
.
25.
Hammad
,
K. J.
,
2015
, “
The Flow Behavior of a Biofluid in a Separated and Reattached Flow Region
,”
ASME J. Fluids Eng.
,
137
(
6
), p.
061104
.
26.
Celik
,
I. B.
,
Ghia
,
U.
,
Roache
,
P. J.
,
Freitas
,
C. J.
,
Coleman
,
H. W.
, and
Raad
,
P. E.
,
2008
, “
Procedure for Estimation of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
078001
.
27.
Hammad
,
K. J.
, and
Shekarriz
,
A.
,
1998
, “
Turbulence in Confined Axisymmetric Jets of Newtonian and Non-Newtonian Fluids
,”
ASME
Paper No. FEDSM98-5272.
You do not currently have access to this content.