This paper aims at analyzing the needle lift's influence on the internal flow of single-hole diesel injector to identify flow structures. A numerical Reynolds-Averaged Navier–Stokes (RANS) model of a single-hole diesel injector was developed and validated to study the flow's dynamic for different needle's lifts and subjected to realistic injection pressure. The main findings are: (1) under steady injection pressure, flow coefficients reached a steady-state value and maximum injected fuel mass flow rate is reached at intermediate needle's lifts. (2) The sac volume is the area with several vortex structures due to the throttling between the needle body and the injector body. (3) The frequency of the fluctuating injection pressure can excite the initial jet entering the sac volume similarly to the Coanda effect. Finally, using a proper orthogonal decomposition (POD) allowed extracting coherent structures within the sac volume and putting in evidence a reorganization of the flow.

References

References
1.
He
,
Z.
,
Zhong
,
W.
,
Wang
,
Q.
,
Jiang
,
Z.
, and
Shao
,
Z.
,
2013
, “
Effect of Nozzle Geometrical and Dynamic Factors on Cavitating and Turbulent Flow in a Diesel Multi-Hole Injector Nozzle
,”
Int. J. Therm. Sci.
,
70
, pp.
132
143
.
2.
Salvador
,
F.
,
Martínez-López
,
J.
,
Caballer
,
M.
, and
De Alfonso
,
C.
,
2013
, “
Study of the Influence of the Needle Lift on the Internal Flow and Cavitation Phenomenon in Diesel Injector Nozzles by CFD Using RANS Methods
,”
Energy Convers. Manage.
,
66
(3), pp.
246
256
.
3.
Payri
,
F.
,
Payri
,
R.
,
Salvador
,
F.
, and
Martínez-López
,
J.
,
2012
, “
A Contribution to the Understanding of Cavitation Effects in Diesel Injector Nozzles Through a Combined Experimental and Computational Investigation
,”
Comput. Fluids
,
58
, pp.
88
101
.
4.
Som
,
S.
,
El-Hannouny
,
E.
,
Longman
,
D.
, and
Aggarwal
,
S.
,
2010
, “
Investigation of Nozzle Flow and Cavitation Characteristics in a Diesel Injector
,”
ASME J. Eng. Gas Turbines Power
,
132
(
4
), p.
042802
.
5.
Powell
,
C.
,
Liu
,
Z.
,
Fezzaa
,
K.
, and
Kastengren
,
A.
,
2011
, “
The Effects of Diesel Injector Needle Motion on Spray Structure
,”
ASME J. Eng. Gas Turbines Power
,
133
(
1
), p.
012802
.
6.
Wang
,
X.
,
Li
,
K.
, and
Su
,
W.
,
2012
, “
Experimental and Numerical Investigations on Internal Flow Characteristics of Diesel Nozzle Under Real Fuel Injection Conditions
,”
Exp. Therm. Fluid Sci.
,
42
, pp.
204
211
.
7.
Wang
,
X.
, and
Su
,
W.
,
2010
, “
Numerical Investigation on Relationship Between Injection Pressure Fluctuations and Unsteady Cavitation Processes Inside High-Pressure Diesel Nozzle Holes
,”
Fuel
,
89
(
9
), pp.
2252
2259
.
8.
Xue
,
Q.
,
Som
,
S.
,
Battistoni
,
M.
,
Longman
,
D.
,
Zhao
,
H.
,
Senecal
,
P.
, and
Pomraning
,
E.
,
2013
, “
Three-Dimensional Simulations of the Transient Internal Flow in a Diesel Injector: Effects of Needle Movement
,”
ILASS
Americas, 25th Annual Conference on Liquid Atomization and Spray Systems
, Pittsburgh, PA, May 5–8, Paper No. 63-2013.
9.
Roth
,
H.
,
Giannadakis
,
E.
,
Gavaises
,
M.
,
Arcoumanis
,
C.
,
Omae
,
K.
,
Sakata
,
I.
,
Nakamura
,
M.
, and
Yanagihara
,
H.
,
2005
, “
Effect of Multi-Injection Strategy on Cavitation Development in Diesel Injector Nozzle Holes
,”
SAE
Paper No. 2005-01-1237.
10.
Gavaises
,
M.
,
Andriotis
,
A.
,
Papoulias
,
D.
,
Mitroglou
,
N.
, and
Theodorakakos
,
A.
,
2009
, “
Characterization of String Cavitation in Large-Scale Diesel Nozzles With Tapered Holes
,”
Phys. Fluids
,
21
(
5
), p.
052107
.
11.
Andriotis
,
A.
,
Gavaises
,
M.
, and
Arcoumanis
,
C.
,
2008
, “
Vortex Flow and Cavitation in Diesel Injector Nozzles
,”
J. Fluid Mech.
,
610
(
1
), pp.
195
215
.
12.
Graftieaux
,
L.
,
Michard
,
M.
, and
Grosjean
,
N.
,
2001
, “
Combining PIV, POD and Vortex Identification Algorithms for the Study of Unsteady Turbulent Swirling Flows
,”
Meas. Sci. Technol.
,
12
(
9
), pp.
1422
1429
.
13.
Mousseau
,
A.
,
Dufresne
,
L.
, and
Seers
,
P.
,
2013
, “
Numerical Parametric Study of the Cavitational Flow in a Diesel Injector
,”
CFD Canada, 21st Annual Conference of the CFD Society of Canada
, Sherbrooke, QC, May 6–9, pp. 1–7.
14.
CD-Adapco
,
2012
, “
STAR-CD
,” CD-Adapco, London.
15.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
16.
Celik
,
I. B.
,
Ghia
,
U.
,
Roache
,
P. J.
,
Freitas
,
C. J.
,
Coleman
,
H.
, and
Raad
,
P. E.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
078001
.
17.
Sandia National Laboratories
,
2011
, “
Injector Characterization: 1997 to 2007
,” http://www.sandia.gov/ecn/cvdata/sandiaCV/injectorCharacterization-1997.php#fig2.4.2.2
18.
Bianchi
,
G. M.
,
Falfair
,
S.
,
Parotto
,
M.
, and
Osbat
,
G.
,
2003
, “
Advanced Modeling of Common Rail Injector Dynamics and Comparison With Experiments
,”
SAE
Paper No. 2003-01-0006.
19.
He
,
Z.
,
Zhong
,
W.
,
Wang
,
Q.
,
Jiang
,
Z.
, and
Fu
,
Y.
,
2013
, “
An Investigation of Transient Nature of the Cavitating Flow in Injector Nozzles
,”
Appl. Therm. Eng.
,
54
(
1
), pp.
56
64
.
20.
Allery
,
C.
,
Guerin
,
S.
,
Hamdouni
,
A.
, and
Sakout
,
A.
,
2004
, “
Experimental and Numerical POD Study of the Coanda Effect Used to Reduce Self-Sustained Tones
,”
Mech. Res. Commun.
,
31
(
1
), pp.
105
120
.
21.
Holmes
,
P.
,
Lumley
,
J. L.
, and
Berkooz
,
G.
,
1998
,
Turbulence, Coherent Structures, Dynamical Systems and Symmetry
,
Cambridge University Press
,
Cambridge, UK
.
22.
Sirovich
,
L.
,
1989
, “
Chaotic Dynamics of Coherent Structures
,”
Physica D
,
37
(
1
), pp.
126
145
.
23.
Chen
,
H.
,
Reuss
,
D. L.
, and
Sick
,
V.
,
2012
, “
On the Use and Interpretation of Proper Orthogonal Decomposition of In-Cylinder Engine Flows
,”
Meas. Sci. Technol.
,
23
(
8
), p.
085302
.
24.
Luchtenburg
,
D.
,
Noack
,
B.
, and
Schlegel
,
M.
,
2009
, “
An Introduction to the POD Galerkin Method for Fluid Flows With Analytical Examples and MATLAB Source Codes
,”
Technical Report No. 01/2009
.
25.
Chen
,
H.
,
Reuss
,
D. L.
,
Hung
,
D. L.
, and
Sick
,
V.
,
2012
, “
A Practical Guide for Using Proper Orthogonal Decomposition in Engine Research
,”
Int. J. Engine Res.
,
14
(
4
), pp.
307
319
.
26.
Chatterjee
,
A.
,
2000
, “
An Introduction to the Proper Orthogonal Decomposition
,”
Curr. Sci. India
,
78
(
7
), pp.
808
817
.
27.
Siebers
,
D. L.
,
1999
, “
Scaling Liquid-Phase Fuel Penetration in Diesel Sprays Based on Mixing-Limited Vaporization
,”
SAE
Paper No. 1999-01-0528.
You do not currently have access to this content.