A new model for calculation of the velocity field in a pump meridian is presented in this paper. It is a parameterized rotational flow model providing the pump designer with an option to simulate various flow conditions at the blade leading edge using a single parameter, which leads to different blade designs. Despite being rotational, this flow model does not allow for creation of helical swirl structures, a feature that is usually sought to be suppressed in a pump impeller. A condition for a flow pattern suitable for a pump hydraulic design is derived using curvilinear coordinates. The variation of the meridional velocity for different choices of the parameter is demonstrated, and the meridional flow field is compared against the turbulent flow. The resulting velocity field is easy to obtain and provides a unified approach to determine the distribution of the blade inlet angles along the leading edge for a range of design requirements.

References

References
1.
Gulich
,
J. F.
,
2010
,
Centrifugal Pumps
,
2nd ed.
,
Springer
,
Berlin
.
2.
Song
,
P.
,
Zhang
,
Y.
,
Xu
,
C.
,
Zhou
,
X.
, and
Zhang
,
J.
,
2015
, “
Numerical Studies on Cavitation Behaviour in Impeller of Centrifugal Pump With Different Blade Profiles
,”
Int. J. Fluid Mach. Syst.
,
8
(
2
), pp.
94
101
.
3.
Brennen
,
C. E.
,
2011
,
Hydrodynamics of Pumps
,
Cambridge University Press
,
Cambridge, UK
.
4.
Hirschi
,
R.
,
Dupont
,
Ph.
,
Avellan
,
F.
,
Favre
,
J.-N.
,
Guelich
,
J.-F.
, and
Parkinson
,
E.
,
1998
, “
Centrifugal Pump Performance Drop Due to Leading Edge Cavitation: Numerical Predictions Compared With Model Tests
,”
ASME J. Fluids Eng.
,
120
(
4
), pp.
705
711
.
5.
Coutier-Delgosha
,
O.
,
Fortes-Patella
,
R.
,
Reboud
,
J. L.
,
Hofmann
,
M.
, and
Stoffel
,
B.
,
2003
, “
Experimental and Numerical Studies in a Centrifugal Pump With Two-Dimensional Curved Blades in Cavitating Condition
,”
ASME J. Fluids Eng.
,
125
(
6
), pp.
970
978
.
6.
Hatano
,
S.
,
Kang
,
D.
,
Kagawa
,
S.
,
Nohmi
,
M.
, and
Yokota
,
K.
,
2014
, “
Study of Cavitation Instabilities in Double Suction Centrifugal Pump
,”
Int. J. Fluid Mach. Syst.
,
7
(
3
), pp.
94
100
.
7.
Ardizzon
,
G.
, and
Pavesi
,
G.
,
1998
, “
Optimum Incidence Angle in Centrifugal Pumps and Radial Inflow Turbines
,”
Proc. Inst. Mech. Eng., Part A
,
212
(
2
), pp.
97
107
.
8.
Peck
,
J. F.
,
1968
, “
Design of Centrifugal Pumps With Computer Aid
,”
Proc. Inst. Mech. Eng.
,
183
(
1
), pp.
321
351
.
9.
Stepanoff
,
A. J.
,
1958
,
Centrifugal and Axial Flow Pumps: Theory, Design and Application
,
2nd ed.
,
Wiley
,
New York
.
10.
Lazarkiewicz
,
S.
, and
Troskolanski
,
A. T.
,
1965
,
Impeller Pumps
,
1st ed.
,
Pergamon Press
,
Oxford, UK
.
11.
Lobanoff
,
V. S.
, and
Ross
,
R. R.
,
1992
,
Centrifugal Pumps: Design and Application
,
2nd ed.
,
Gulf Professional Publishing
,
Houston, TX
.
12.
Zangeneh
,
M.
,
1991
, “
A Compressible Three-Dimensional Design Method for Radial and Mixed Flow Turbomachinery Blades
,”
Int. J. Numer. Methods Fluids
,
13
(
5
), pp.
599
624
.
13.
Zangeneh
,
M.
,
Goto
,
A.
, and
Harada
,
H.
,
1998
, “
On the Design Criteria for Suppression of Secondary Flows in Centrifugal and Mixed Flow Impellers
,”
ASME J. Turbomach.
,
120
(
4
), pp.
723
735
.
14.
Goto
,
A.
,
Nohmi
,
M.
,
Sakurai
,
T.
, and
Sogawa
,
Y.
,
2002
, “
Hydrodynamic Design System for Pumps Based on 3D CAD, CFD, and Inverse Design Method
,”
ASME J. Fluids Eng.
,
124
(
2
), pp.
329
335
.
15.
Zhou
,
X.
,
Zhang
,
Y.
,
Ji
,
Z.
, and
Hou
,
H.
,
2014
, “
The Optimal Hydraulic Design of Centrifugal Impeller Using Genetic Algorithm With BVF
,”
Int. J. Rotating Mach.
,
2014
(
2014
), p.
845302
.
16.
Nechleba
,
M.
,
1957
,
Hydraulic Turbines: Their Design and Equipment
,
Artia
,
Prague, Czech Republic
.
17.
Smirnoff
,
V. I.
,
1964
,
A Course of Higher Mathematics
, Vol.
2
,
Pergamon Press
,
Oxford, UK
.
18.
Weller
,
H. G.
,
Tabor
,
G.
,
Jasak
,
H.
, and
Fureby
,
C.
,
1998
, “
A Tensorial Approach to Computational Continuum Mechanics Using Object-Oriented Techniques
,”
Comput. Phys.
,
12
(
6
), pp.
620
631
.
19.
“OpenFOAM User Guide,” accessed Mar. 26,
2015
, http://cfd.direct/openfoam/user-guide/
20.
“Foam-extend,” accessed Oct. 4,
2015
, http://wikki.gridcore.se/foam-extend
21.
Beaudoin
,
M.
, and
Jasak
,
H.
,
2008
, “
Development of a Generalized Grid Interface for Turbomachinery Simulations With OpenFOAM
,”
Open Source CFDInternational Conference
, Berlin, Dec. 4–5.
22.
Celik
,
I.
, and
Karatekin
,
O.
,
1997
, “
Numerical Experiments on Application of Richardson Extrapolation With Nonuniform Grids
,”
ASME J. Fluids Eng.
,
119
(
3
), pp.
584
590
.
23.
Roache
,
P. J.
,
1994
, “
Perspective: A Method for Uniform Reporting of Grid Refinement Studies
,”
ASME J. Fluids Eng.
,
116
(
3
), pp.
405
413
.
You do not currently have access to this content.