The present study addresses the drag owing to the presence of vegetation and turbulent characteristics in a mobile bed channel, characterized by fully submerged vegetation formed by nonuniform vegetation densities. The influence of seepage on the velocity profiles, Reynolds stress, and turbulence intensities is discussed. Experimental results show that vegetation density is one of the important parameters that affect the flow resistance. It is found that higher vegetation density when placed at the downstream side leads to a reduction in velocity, Reynolds stress, and turbulent intensities. Downward seepage increases the near bed velocity, Reynolds stress, and turbulent intensities. Moment analysis shows that there is an increase in the inrush of flow, and sediment particles are transported more toward the streamwise direction with the application of seepage. The dominance of sweep events over ejection events increases more sediment transport. However, high vegetation density when placed at the downstream portion slightly decreases the dominance of sweep event. Drag coefficient decreases near the vegetation top and increases near the bed. Downward seepage decreases the effect of drag offered by the vegetation stems. The reduction in flow characteristics, viz., velocity, Reynolds stress, turbulent intensities, in the downstream portion of lesser spacing vegetation stems is attributed an increased drag coefficient.

References

References
1.
Nepf
,
H. M.
, and
Vivoni
,
E. R.
,
2000
, “
Flow Structure in Depth-Limited, Vegetated Flow
,”
J. Geophys. Res.
,
105
, pp.
28547
28557
.
2.
Ghisalberti
,
M.
, and
Nepf
,
H.
,
2005
, “
Mass Transport in Vegetated Shear Flows
,”
Environ. Fluid Mech.
,
5
(
6
), pp.
527
551
.
3.
Hongwu
,
T.
,
Wang
,
H.
,
Liang
,
D.
,
Lv
,
S.
, and
Yan
,
L.
,
2013
, “
Incipient Motion of Sediment in the Presence of Emergent Rigid Vegetation
,”
J. Hydro-Environ. Res.
,
7
(
3
), pp.
202
208
.
4.
Wang
,
H.
,
Tang
,
H.
,
Yuan
,
S.
,
Lv
,
S.
, and
Zhao
,
X.
,
2014
, “
An Experimental Study of the Incipient Bed Shear Stress Partition in Mobile Bed Channels Filled With Emergent Rigid Vegetation
,”
Sci. China: Technol. Sci.
,
57
(
6
), pp.
1165
1174
.
5.
Zhang
,
H.
,
Wang
,
Z.
,
Dai
,
L.
, and
Xu
,
W.
,
2015
, “
Influence of Vegetation on Turbulence Characteristics and Reynolds Shear Stress in Partly Vegetated Channel
,”
ASME J. Fluids Eng.
,
137
(
6
), p.
061201
.
6.
Nepf
,
H. M.
,
2012
, “
Flow and Transport in Regions With Aquatic Vegetation
,”
Annu. Rev. Fluid Mech.
,
44
(
1
), pp.
123
142
.
7.
Poggi
,
D.
,
Porporato
,
A.
, and
Ridolfi
,
L.
,
2004
, “
The Effect of Vegetation Density on Canopy Sub-Layer Turbulence
,”
Boundary Layer Meteorol.
,
111
(
3
), pp.
565
587
.
8.
Carollo
,
F. G.
,
Ferro
,
V.
, and
Termini
,
D.
,
2005
, “
Flow Resistance Law in Channels With Flexible Submerged Vegetation
,”
J. Hydraul. Eng.
,
131
(
7
), pp.
554
564
.
9.
Chen
,
S. C.
,
Kuo
,
Y. M.
, and
Li
,
Y. H.
,
2011
, “
Flow Characteristics Within Different Configurations of Submerged Flexible Vegetation
,”
J. Hydrol.
,
398
, pp.
124
134
.
10.
Finnigan
,
J.
,
2000
, “
Turbulence in Plant Canopies
,”
Annu. Rev. Fluid Mech.
,
32
(
1
), pp.
519
571
.
11.
Ghisalberti
,
M.
, and
Nepf
,
H.
,
2006
, “
The Structure of Shear Layer in Flows Over Rigid and Flexible Canopies
,”
Environ. Fluid Mech.
,
6
(
6
), pp.
277
301
.
12.
Raupach
,
M. R.
,
Finnigan
,
J. J.
, and
Brunet
,
Y.
,
1996
, “
Coherent Eddies and Turbulence in Vegetation Canopies: The Mixing Layer Analogy
,”
Boundary-Layer Meteorol.
,
78
, pp.
351
382
.
13.
Nathan
,
R.
,
Katul
,
G. G.
,
Horn
,
H. S.
,
Thomas
,
S. M.
,
Oren
,
R.
,
Avissar
,
R.
,
Pacala
,
S. W.
, and
Levin
,
S. A.
,
1977
, “
Mechanisms of Long-Distance Dispersal of Seeds by Wind
,”
Nature
,
418
, pp.
409
413
.
14.
Scanlon
,
T. M.
,
Albertson
,
J. D.
,
Caylor
,
K. K.
, and
Williams
,
C. A.
,
2002
, “
Determining Land Surface Fractional Cover From NDVI and Rainfall Time Series for a Savanna Ecosystem
,”
Remote Sens. Environ.
,
82
, pp.
376
388
.
15.
Nezu
,
I.
,
2005
, “
Open-Channel Flow Turbulence and Its Research Prospect in the 21st Century
,”
J. Hydraul. Eng.
,
131
(
4
), pp.
229
246
.
16.
Tanino
,
Y.
, and
Nepf
,
H. M.
,
2008
, “
Laboratory Investigation of Mean Drag in a Random Array of Rigid, Emergent Cylinders
,”
J. Hydraul. Eng.
,
134
(
1
), pp.
34
41
.
17.
Cowan
,
W. L.
,
1956
, “
Estimating Hydraulic Roughness Coefficients
,”
Agric. Eng.
,
37
(
7
), pp.
473
475
.
18.
Tsujimoto
,
T.
,
1999
, “
Fluvial Processes in Streams With Vegetation
,”
J. Hydraul. Res.
,
37
(
6
), pp.
789
803
.
19.
Duan
,
J. G.
,
Barkdoll
,
B.
, and
French
,
R.
,
2006
, “
Lodging Velocity for an Emergent Aquatic Plant in Open Channels
,”
J. Hydraul. Eng.
,
132
(
10
), pp.
1015
1020
.
20.
Fisher
,
K.
,
1992
, “
The Hydraulic Roughness of Vegetated Channels
,” Report SR No. 305.
21.
Luhar
,
M.
, and
Nepf
,
H. M.
,
2013
, “
From the Blade Scale to the Reach Scale: A Characterization of Aquatic Vegetative Drag
,”
Adv. Water Resour.
,
51
, pp.
305
316
.
22.
Kim
,
H. S.
,
Kimura
,
I.
, and
Shimizu
,
Y.
,
2015
, “
Bed Morphological Changes Around a Finite Patch of Vegetation
,”
Earth Surf. Processes Landforms
,
40
(
3
), pp.
375
388
.
23.
Meijer
,
D. G.
, and
Van Velzen
,
E. H.
,
1999
, “
Prototype-Scale Flume Experiments on Hydraulic Roughness of Submerged Vegetation
,”
28th International IAHR Conference
, Graz, Austria.
24.
Stephan
,
U.
, and
Gutknecht
,
D.
,
2002
, “
Hydraulic Resistance of Submerged Flexible Vegetation
,”
J. Hydrol.
,
269
, pp.
27
43
.
25.
Järvelä
,
J.
,
2002
, “
Flow Resistance of Flexible and Stiff Vegetation: A Flume Study With Natural Plants
,”
J. Hydrol.
,
269
, pp.
44
54
.
26.
Righetti
,
M.
, and
Armanini
,
A.
,
2002
, “
Flow Resistance in Open Channel Flows With Sparsely Distributed Bushes
,”
J. Hydrol.
,
269
, pp.
55
64
.
27.
Klopstra
,
D.
,
Barneveld
,
H. J.
,
Van Noortwijk
,
J. M.
, and
Van Velzen
,
E. H.
,
1997
, “
Analytical Model for Hydraulic Roughness of Submerged Vegetation
,”
27th International IAHR Conference
,
San Francisco, CA
.
28.
Kouwen
,
N.
, and
Li
,
R. M.
,
1980
, “
Biomechanics of Vegetative Channel Linings
,”
J. Hydraul. Div.
,
106
(
HY6
), pp.
1085
1103
.
29.
Fathi-Maghadam
,
M.
, and
Kouwen
,
N.
,
1997
, “
Nonrigid, Nonsubmerged, Vegetative Roughness on Floodplains
,”
J. Hydraul. Eng.
,
123
(
1
), pp.
51
57
.
30.
Nepf
,
H. M.
, and
Vivoni
,
E. R.
,
1999
, “
Turbulence Structure in Depth-Limited Vegetated Flow: Transition Between Emergent and Submerged Regimes
,”
28th International IAHR Conference
, Graz, Austria.
31.
Fischer-Antze
,
T.
,
Stoesser
,
T.
,
Bates
,
P.
, and
Olsen
,
N. R. B.
,
2001
, “
3D Numerical Modelling of Open Channel Flow With Submerged Vegetation
,”
J. Hydraul. Res.
,
39
(
3
), pp.
303
310
.
32.
López
,
F.
, and
García
,
M. H.
,
2001
, “
Mean Flow and Turbulence Structure of Open-Channel Flow Through Non-Emergent Vegetation
,”
J. Hydraul. Eng.
,
127
(
5
), pp.
392
402
.
33.
Nakagawa
,
H.
,
Tsujimoto
,
T.
, and
Shimizu
,
Y.
,
1992
, “
Sediment Transport in Vegetated Bed Channel
,”
5th International Symposium on River Sedimentation
, Karlsruhe, Germany.
34.
Watanabe
,
Y.
, and
Hoshi
,
K.
,
1996
, “
Influence of Vegetation on Flow Velocity and Suspended Load
,”
International Workshop on Interactive Issues of Flood and Environment in Cold Regions
, Trento, Italy, Oct. 3–6.
35.
Houwing
,
E. J.
,
Tanczos
,
I. C.
,
Kroon
,
A.
, and
De Vries
,
M. B.
,
2000
, “
Interaction of Submerged Vegetation, Hydrodynamics and Turbidity; Analysis of Field and Laboratory Results
,”
INTERCOH Conference
.
36.
Teeter
,
A. M.
,
Johnson
,
B. H.
,
Berger
,
C.
,
Stelling
,
G.
,
Scheffner
,
N. W.
,
Garcia
,
M. H.
, and
Parchure
,
T. M.
,
2001
, “
Hydrodynamic and Sediment Transport Modelling With Emphasis on Shallow-Water, Vegetated Areas (Lakes, Reservoirs, Estuaries and Lagoons)
,”
Hydrobiologia
,
444
(
1
), pp.
1
23
.
37.
Madsen
,
J. D.
,
Chambers
,
P. A.
,
James
,
W. F.
,
Koch
,
E. W.
, and
Westlake
,
D. F.
,
2001
, “
The Interaction Between Water Movement, Sediment Dynamics and Submersed Macrophytes
,”
Hydrobiologia
,
444
, pp.
71
84
.
38.
Nepf
,
H. M.
,
1999
, “
Drag, Turbulence, and Diffusion in Flow Through Emergent Vegetation
,”
Water Resour. Res.
,
35
(
2
), pp.
479
489
.
39.
Finnigan
,
J. J.
,
Shaw
,
R. H.
, and
Patton
,
E. G.
,
2009
, “
Turbulence Structure Above a Vegetation Canopy
,”
J. Fluid Mech.
,
637
, pp.
387
424
.
40.
Nezu
,
I.
, and
Onitsuka
,
K.
,
2001
, “
Turbulent Structure in Partly Vegetated Open Channel Flows With LDA and PIV Measurements
,”
J. Hydraul. Res.
,
39
(
6
), pp.
629
642
.
41.
Wilson
,
C. A. M. E.
,
Stoesser
,
T.
,
Bates
,
P. D.
, and
Pinzen
,
A. B.
,
2003
, “
Open Channel Flow Through Different Forms of Submerged Flexible Vegetation
,”
J. Hydraul. Eng.
,
129
(
11
), pp.
847
853
.
42.
Luna
,
A. V.
,
Crosato
,
A.
, and
Uijttewaal
,
W. S. J.
,
2015
, “
Effects of Vegetation on Flow and Sediment Transport: Comparative Analyses and Validation of Predicting Models
,”
Earth Surf. Processes Landforms
,
40
(
2
), pp.
157
176
.
43.
de Lima
,
P. H. S.
,
Janzen
,
J. G.
, and
Nepf
,
H. M.
,
2015
, “
Flow Patterns Around Two Neighboring Patches of Emergent Vegetation and Possible Implications for Deposition and Vegetation Growth
,”
Environ. Fluid Mech.
,
15
(
4
), pp.
881
898
.
44.
Tanji
,
K. K.
, and
Kielen
,
N. C.
,
2002
, “
Agricultural Drainage Water Management in Arid and Semi-Arid Areas
,”
Irrigation and Drainage Paper
,
FAO
,
Rome, Italy
.
45.
Kinzli
,
K.-D.
,
Martinez
,
M.
,
Oad
,
R.
,
Prior
,
A.
, and
Gensler
,
D.
,
2010
, “
Using an ADCP to Determine Canal Seepage Loss in an Irrigation District
,”
Agric. Water Manage.
,
97
(
6
), pp.
801
810
.
46.
Martin
,
C. A.
, and
Gates
,
T. K.
,
2014
, “
Uncertainty of Canal Seepage Losses Estimated Using Flowing Water Balance With Acoustic Doppler Devices
,”
J. Hydrol.
,
517
, pp.
764
761
.
47.
Richardson
,
J. R.
,
Abt
,
S. R.
, and
Richardson
,
E. V.
,
1985
, “
Inflow Seepage Influence on Straight Alluvial Channels
,”
J. Hydraul. Eng.
,
111
(
8
), pp.
1133
1147
.
48.
Maclean
,
A. G.
,
1991
, “
Open Channel Velocity Profiles Over a Zone of Rapid Infiltration
,”
J. Hydraul. Res.
,
29
(
1
), pp.
15
27
.
49.
Rao
,
A. R.
,
Subrahmanyam
,
V.
,
Thayumanavan
,
S.
, and
Namboodiripad
,
D.
,
1994
, “
Seepage Effects on Sand Bed Channels
,”
J. Irrig. Drain. Eng.
,
120
(
1
), pp.
60
79
.
50.
Chen
,
X.
, and
Chiew
,
Y.-M.
,
2004
, “
Velocity Distribution of Turbulent Open Channel Flow With Bed Suction
,”
J. Hydraul. Eng.
,
130
(
2
), pp.
140
148
.
51.
Deshpande
,
V.
, and
Kumar
,
B.
,
2015
, “
Advent of Sheet Flow in Suction Affected Alluvial Channels
,”
Environ. Fluid Mech.
,
16
(
1
), pp.
25
44
.
52.
Jarvela
,
J.
,
2004
, “
Effect of Submerged Flexible Vegetation on Flow Structure and Resistance
,”
J. Hydrol.
,
307
(1–4), pp.
233
241
.
53.
Liu
,
D.
,
Diplas
,
P.
,
Fairbanks
,
J. D.
, and
Hodges
,
C. C.
,
2008
, “
An Experimental Study of Flow Through Rigid Vegetation
,”
J. Geophys. Res.
,
113
(
F4
).
54.
Huai
,
W.
,
Han
,
J.
,
Zeng
,
Y.
,
An
,
X.
, and
Qian
,
Z.
,
2009
, “
Velocity Distribution of Flow With Submerged Flexible Vegetations Based on Mixing-Length Approach
,”
Appl. Math. Mech.
,
30
(
3
), pp.
343
351
.
55.
Kouwen
,
N.
, and
Unny
,
T. E.
,
1973
, “
Flexible Roughness in Open Channels
,”
J. Hydraul. Div., Am. Soc. Civ. Eng.
,
99
(
5
), pp.
713
728
.
56.
Okamoto
,
T.
, and
Nezu
,
I.
,
2009
, “
Turbulence Structure and ‘Monami’ Phenomena in Vegetated in Flexible Vegetated Open Channel Flows
,”
J. Hydraul. Res.
,
47
(
6
), pp.
798
810
.
57.
Okamoto
,
T.
, and
Nezu
,
I.
,
2010
, “
Flow Resistance in Open-Channel Flows With Rigid and Flexible Vegetation
,”
River Flow 2010
,
Karlsruhe: Bundesanstalt für Wasserbau
,
Braunschweig, Germany
, pp.
261
268
.
58.
Goring
,
D. G.
, and
Nikora
,
V. I.
,
2002
, “
Despiking Acoustic Doppler Velocimeter Data
,”
J. Hydraul. Eng.
,
128
(
1
), pp.
117
126
.
59.
Dey
,
S.
,
Das
,
R.
,
Gaudio
,
R.
, and
Bose
,
S. K.
,
2012
, “
Turbulence in Mobile Bed Streams for Flat Bed
,”
Acta Geophys.
,
60
(
6
), pp.
1547
1588
.
60.
Dey
,
S.
, and
Nath
,
T. K.
,
2010
, “
Turbulence Characteristics in Flows Subjected to Boundary Injection and Suction
,”
J. Eng. Mech.
,
136
(
7
), pp.
877
888
.
61.
Cao
,
D.
, and
Chiew
,
Y.-M.
,
2014
, “
Suction Effects on Sediment Transport in Closed-Conduit Flows
,”
J. Hydraul. Eng.
,
140
(
5
), p.
04014008-1-9
.
62.
Chen
,
X.
, and
Chiew
,
Y.-M.
,
2004
, “
Velocity Distribution of Turbulent Open Channel Flow With Bed Suction
,”
J. Hydraul. Eng.
,
130
(
2
), pp.
140
148
.
63.
Lu
,
S. S.
, and
Willmarth
,
W. W.
,
1973
, “
Measurements of the Structure of the Reynolds Stress in a Turbulent Boundary Layer
,”
J. Fluid Mech.
,
60
(
3
), pp.
481
511
.
64.
Raupach
,
M. R.
,
1981
, “
Conditional Statistics of Reynolds Stress in Rough-Wall and Smooth-Wall Turbulent Boundary Layers
,”
J. Fluid Mech.
,
108
, pp.
363
382
.
65.
Nezu
,
I.
, and
Sanjou
,
M.
,
2008
, “
Turbulence Structure and Coherent Motion in Vegetated Canopy Open Channel Flows
,”
J. Hydro-Environ. Res.
,
2
(
2
), pp.
62
90
.
You do not currently have access to this content.