Tight porous materials are used as pneumatic components in a wide range of industrial applications. Such porous materials contain thousands of interconnected irregular micropores, which produce a large pressure drop (ΔP) between the upstream and downstream sides of the porous material when a fluid flows through it. The relationship between the pressure drop and flow rate (i.e., ΔP-G characteristics) is a very important basic characteristic. Temperature is one of the factors that affect the ΔP-G characteristics because variations in temperature change the viscosity and density of the fluid. In this study, we experimentally analyzed the ΔP-G characteristics of tight porous materials by heating them using an electromagnetic system. First, we experimentally investigated the change in the ΔP-G curve under the condition of constant heating power. Then, based on the Darcy–Forchheimer theory, we introduced an experimental method to determine the average temperature of the fluid. The results show that the temperature reaches approximately 500 K in the small flow rate range, which produces considerable changes in the ΔP-G curve. As the flow rate increases, the temperature decreases, and thus, the ΔP-G curve at constant heating power converges to the curve for the room temperature. Furthermore, we compared three porous materials with different permeability coefficients and porosities and analyzed the effect of these parameters on the ΔP-G characteristics. We also performed experiments at different downstream pressures to study the effect of the average density on the ΔP-G characteristics.

References

References
1.
Hosokawa
,
T.
,
Somaya
,
K.
,
Miyatake
,
M.
, and
Yoshimoto
,
S.
,
2015
, “
Static Characteristics of Aerostatic Thrust Bearings With Multiple Porous Inlet Ports
,”
ASME J. Tribol.
,
137
(
2
), p.
021702
.
2.
Huang
,
T.-Y.
,
Shen
,
S.-C.
,
Lin
,
S.-C.
, and
Hsu
,
S.-Y.
,
2014
, “
Pressure Distribution in the Air Film and the Porous Conveyor Air Bearing
,”
Appl. Sci. Precis. Eng. Innovation
,
479–480
, pp.
380
384
.
3.
Oiwa
,
N.
,
Masuda
,
M.
,
Hirayama
,
T.
,
Matsuoka
,
T.
, and
Yabe
,
H.
,
2012
, “
Deformation and Flying Height Orbit of Glass Sheets on Aerostatic Porous Bearing Guides
,”
Tribol. Int.
,
48
, pp.
2
7
.
4.
Kwan
,
Y. B. P.
, and
Corbett
,
J.
,
1998
, “
Porous Aerostatic Bearings—An Updated Review
,”
Wear
,
222
(
2
), pp.
69
73
.
5.
Nicoletti
,
R.
,
Purquerio
,
B. d. M.
, and
Silveira
,
Z. d. C.
,
2013
, “
The Effect of Permeability Distribution on the Numerical Analysis of Aerostatic Ceramic Porous Bearings
,”
Lubr. Sci.
,
25
(
2
), pp.
185
194
.
6.
Kuroshita
,
K.
,
Sekiguchi
,
Y.
,
Oshiki
,
K.
, and
Oneyama
,
N.
,
2004
, “
Development of New Test Method for Flow-Rate Characteristics of Pneumatic Components
,” Bath Workshop on Power Transmission and Motion Control (PTMC 2004), Bath, UK, pp.
243
256
.
7.
Jungong
,
M.
,
Juan
,
C.
,
Ke
,
Z.
, and
Senoo
,
M.
,
2008
, “
Flow-Rate Characteristics Parameters of Pneumatic Component
,”
IEEE
International Conference on Automation and Logistics
, Qingdao, China, Sept. 1–3, Vol.
1–6
, pp.
2946
2949
.
8.
Ma
,
J.
,
Wu
,
B.
,
Chen
,
J.
,
Tang
,
Z.
, and
Oneyama
,
N.
,
2008
, “
Error Comparison Between ISO/WD 6358-2 and ISO 6358:1989
,”
Proc. SPIE
,
7128
.
9.
Wang
,
T.
,
Peng
,
G.
, and
Kagawa
,
T.
,
2010
, “
Determination of Flow-Rate Characteristics for Pneumatic Components Using a Quasi-Isothermal Tank With Temperature Compensation
,”
Meas. Sci. Technol.
,
21
(
6
), p.
065402
.
10.
Xu
,
Z.-p.
, and
Wang
,
X.-y.
,
2011
, “
Pneumatic Resistance Network Analysis and Dimension Optimization of High Pressure Electronic Pneumatic Pressure Reducing Valve
,”
J. Cent. South Univ. Technol.
,
18
(
3
), pp.
666
671
.
11.
Zhong
,
W.
,
Tao
,
G.
,
Li
,
X.
,
Kawashima
,
K.
, and
Kagawa
,
T.
,
2011
, “
Determination of Flow Rate Characteristics of Porous Media Using Charge Method
,”
Flow Meas. Instrum.
,
22
(
3
), pp.
201
207
.
12.
Lee
,
H. G.
, and
Lee
,
D. G.
,
2006
, “
Design of a Large LCD Panel Handling Air Conveyor With Minimum Air Consumption
,”
Mech. Mach. Theory
,
41
(
7
), pp.
790
806
.
13.
Calamas
,
D.
,
Baker
,
J.
, and
Sharif
,
M.
,
2013
, “
Flow Behavior and Pressure Drop in Porous Disks With Bifurcating Flow Passages
,”
ASME J. Fluids Eng.
,
135
(
10
), p.
101202
.
14.
Naaktgeboren
,
C.
,
Krueger
,
P. S.
, and
Lage
,
J. L.
,
2012
, “
Inlet and Outlet Pressure-Drop Effects on the Determination of Permeability and Form Coefficient of a Porous Medium
,”
ASME J. Fluids Eng.
,
134
(
5
), p.
051209
.
15.
Jin
,
Y.
,
Chen
,
K. P.
, and
Chen
,
M.
,
2012
, “
Highly Compressible Porous Media Flow Near a Wellbore: Effect of Gas Acceleration
,”
ASME J. Fluids Eng.
,
134
(
1
), p.
011301
.
16.
Breugem
,
W.-P.
,
van Dijk
,
V.
, and
Delfos
,
R.
,
2014
, “
Flows Through Real Porous Media: X-Ray Computed Tomography, Experiments, and Numerical Simulations
,”
ASME J. Fluids Eng.
,
136
(
4
), p.
040902
.
17.
Yuan
,
J.
, and
Chen
,
K. P.
,
2016
, “
Choked Gas Flow at Pore-Scale and Its Implications to Production From High-Pressure Gas Wells
,”
ASME J. Fluids Eng.
,
138
(
1
), p.
014501
.
18.
Feng
,
J.
,
Dong
,
H.
,
Liu
,
J.
,
Liang
,
K.
, and
Gao
,
J.
,
2015
, “
Experimental Study of Gas Flow Characteristics in Vertical Tank for Sinter Waste Heat Recovery
,”
Appl. Therm. Eng.
,
91
, pp.
73
79
.
19.
Bhattacharya
,
A.
,
Calmidi
,
V. V.
, and
Mahajan
,
R. L.
,
2002
, “
Thermophysical Properties of High Porosity Metal Foams
,”
Int. J. Heat Mass Transfer
,
45
(
5
), pp.
1017
1031
.
20.
Poulikakos
,
D.
, and
Kazmierczak
,
M.
,
1987
, “
Forced-Convection in a Duct Partially Filled With a Porous Material
,”
ASME J. Heat Transfer
,
109
(
3
), pp.
653
662
.
21.
Boomsma
,
K.
,
Poulikakos
,
D.
, and
Zwick
,
F.
,
2003
, “
Metal Foams as Compact High Performance Heat Exchangers
,”
Mech. Mater.
,
35
(
12
), pp.
1161
1176
.
22.
Kurtbas
,
I.
, and
Celik
,
N.
,
2009
, “
Experimental Investigation of Forced and Mixed Convection Heat Transfer in a Foam-Filled Horizontal Rectangular Channel
,”
Int. J. Heat Mass Transfer
,
52
(
5–6
), pp.
1313
1325
.
23.
Hsieh
,
W. H.
,
Wu
,
J. Y.
,
Shih
,
W. H.
, and
Chiu
,
W. C.
,
2004
, “
Experimental Investigation of Heat-Transfer Characteristics of Aluminum-Foam Heat Sinks
,”
Int. J. Heat Mass Transfer
,
47
(
23
), pp.
5149
5157
.
24.
Calmidi
,
V. V.
, and
Mahajan
,
R. L.
,
1999
, “
The Effective Thermal Conductivity of High Porosity Fibrous Metal Foams
,”
ASME J. Heat Transfer
,
121
(
2
), pp.
466
471
.
25.
Hwang
,
G. J.
, and
Chao
,
C. H.
,
1994
, “
Heat-Transfer Measurement and Analysis for Sintered Porous Channels
,”
ASME J. Heat Transfer
,
116
(
2
), pp.
456
464
.
26.
Seddeek
,
M. A.
,
2005
, “
Effects of Non-Darcian on Forced Convection Heat Transfer Over a Flat Plate in a Porous Medium-With Temperature Dependent Viscosity
,”
Int. Commun. Heat Mass Transfer
,
32
(
1–2
), pp.
258
265
.
27.
Yeo
,
S. H.
,
Lee
,
S. R.
, and
Lee
,
C. H.
,
2015
, “
Effect of Gas Temperature on Flow Rate Characteristics of an Averaging Pitot Tube Type Flow Meter
,”
J. Mech. Sci. Technol.
,
29
(
1
), pp.
241
249
.
28.
Oh
,
D.-S.
, and
Lee
,
C.-H.
,
2011
, “
A Comparative Study of Flow Rate Characteristics of an Averaging Pitot Tube Type Flow Meter According to H Parameters Based on Two Kinds of Differential Pressure Measured at the Flow Meter With Varying Air Temperature
,”
J. Mech. Sci. Technol.
,
25
(
8
), pp.
1961
1967
.
29.
Lange
,
P.
,
Weiss
,
M.
, and
Warnat
,
S.
,
2014
, “
Characteristics of a Micro-Mechanical Thermal Flow Sensor Based on a Two Hot Wires Principle With Constant Temperature Operation in a Small Channel
,”
J. Micromech. Microeng.
,
24
(
12
), p.
125005
.
30.
Bear
,
J.
,
1972
,
Dynamics of Fluids in Porous Media
,
Elsevier
,
New York
.
31.
Zhong
,
W.
,
Li
,
X.
,
Liu
,
F.
,
Tao
,
G.
,
Lu
,
B.
, and
Kagawa
,
T.
,
2014
, “
Measurement and Correlation of Pressure Drop Characteristics for Air Flow Through Sintered Metal Porous Media
,”
Transp. Porous Media
,
101
(
1
), pp.
53
67
.
32.
Civan
,
F.
,
2011
,
Porous Media Transport Phenomena
,
Wiley
,
Hoboken, NJ
.
You do not currently have access to this content.