Experimental data are presented for large arrays of rotating, finite-height cylinders to study the dependence of the three-dimensional (3D) mean flows on the geometric and rotational configurations of the array. Two geometric configurations, each with two rotational configurations, were examined at a nominal Reynolds number of 600 and nominal tip-speed ratios of 0, 2, and 4. It was found that the rotation of the cylinders drives the formation of streamwise and transverse flow patterns between cylinders and that net time–space averaged transverse and vertical flows exist within the developed flow region of the array. This net vertical mean flow provides an additional mechanism for the exchange of momentum between the flow within the array and the flow above it, independent from the turbulent exchange mechanisms which are also observed to increase by almost a factor of three in a rotating array. As an array of rotating cylinders may provide insight into the flow kinematics of an array of vertical axis wind turbines (VAWTs), this planform momentum flux (both mean and turbulent) is of particular interest, as it has the potential to increase the energy resource available to turbines far downstream of the leading edge of the array. In the present study, the streamwise momentum flux into the array could be increased for the rotating-element arrays by up to a factor of 5.7 compared to the stationary-element arrays, while the streamwise flow frontally averaged over the elements could be increased by up to a factor of four in the rotating-element arrays compared to stationary-element arrays.

References

References
1.
Navrose
,
Meena
,
J.
, and
Mittal
,
S.
,
2015
, “
Three-Dimensional Flow Past a Rotating Cylinder
,”
J. Fluid Mech.
,
766
, pp.
28
53
.
2.
Rao
,
A.
,
Radi
,
A.
,
Leontini
,
J.
,
Thompson
,
M. C.
,
Sheridan
,
J.
, and
Hourigan
,
K.
,
2015
, “
A Review of Rotating Cylinder Wake Transitions
,”
J. Fluids Struct.
,
53
, pp.
2
14
.
3.
Chan
,
A. S.
,
Dewey
,
P. A.
,
Jameson
,
A.
,
Liang
,
C.
, and
Smits
,
A. J.
,
2011
, “
Vortex Suppression and Drag Reduction in the Wake of Counter-Rotating Turbines
,”
J. Fluid Mech.
,
679
, pp.
343
382
.
4.
Guo
,
X.
,
Lin
,
J.
,
Tu
,
C.
, and
Wang
,
H.
,
2009
, “
Flow Past Two Rotating Circular Cylinders in a Side-By-Side Arrangement
,”
J. Hydrodyn.
,
21
(
2
), pp.
143
151
.
5.
Kumar
,
S.
,
Gonzalez
,
B.
, and
Probst
,
O.
,
2011
, “
Flow Past Two Rotating Cylinders
,”
Phys. Fluids
,
23
(
1
), p.
014102
.
6.
Ueda
,
Y.
,
Kida
,
T.
, and
Iguchi
,
M.
,
2013
, “
Steady Approach of Unsteady Low-Reynolds-Number Flow Past Two Rotating Circular Cylinders
,”
J. Fluid Mech.
,
736
, pp.
414
443
.
7.
Yoon
,
H. S.
,
Kim
,
J. H.
,
Chun
,
H. H.
, and
Choi
,
H. J.
,
2007
, “
Laminar Flow Past Two Rotating Circular Cylinders in a Side-by-Side Arrangement
,”
Phys. Fluids
,
19
(
12
), p.
128103
.
8.
Yoon
,
H. S.
,
Chun
,
H. H.
,
Kim
,
J. H.
, and
Park
,
I. L. R.
,
2009
, “
Flow Characteristics of Two Rotating Side-by-Side Circular Cylinder
,”
Comput. Fluids
,
38
(
2
), pp.
466
474
.
9.
Dabiri
,
J. O.
,
2011
, “
Potential Order-of-Magnitude Enhancement of Wind Farm Power Density Via Counter-Rotating Vertical-Axis Wind Turbine Arrays
,”
J. Renewable Sustainable Energy
,
3
(
4
), p.
043104
.
10.
Whittlesey
,
R. W.
,
Liska
,
S.
, and
Dabiri
,
J. O.
,
2010
, “
Fish Schools as a Basis for Vertical Axis Wind Turbine Farm Design
,”
Bioinspiration Biomimetics
,
5
.
11.
Duraisamy
,
K.
, and
Lakshminarayan
,
V.
,
2014
, “
Flow Physics and Performance of Vertical Axis Wind Turbine Arrays
,”
AIAA
Paper No. 2014-3139.
12.
Kinzel
,
M.
,
Mulligan
,
Q.
, and
Dabiri
,
J. O.
,
2012
, “
Energy Exchange in an Array of Vertical Axis Wind Turbines
,”
J. Turbul.
,
13
(
38
), pp.
1
13
.
13.
Cal
,
R. B.
,
Lebron
,
J.
,
Castillo
,
L.
,
Kang
,
H. S.
, and
Meneveau
,
C.
,
2010
, “
Experimental Study of the Horizontally Averaged Flow Structure in a Model Wind-Turbine Array Boundary Layer
,”
J. Renewable Sustainable Energy
,
2
(
1
), p.
013106
.
14.
Calaf
,
M.
,
Meneveau
,
C.
, and
Meyers
,
J.
,
2010
, “
Large Eddy Simulation Study of Fully Developed Wind-Turbine Array Boundary Layers
,”
Phys. Fluids
,
22
(
1
), p.
015110
.
15.
Belcher
,
S. E.
,
Harman
,
I. N.
, and
Finnigan
,
J. J.
,
2012
, “
Wind in the Willows: Flows in Forest Canopies in Complex Terrain
,”
Annu. Rev. Fluid Mech.
,
44
(
1
), pp.
479
504
.
16.
Chamorro
,
L. P.
, and
Porte-Agel
,
F.
,
2011
, “
Turbulent Flow Inside and Above a Wind Farm: A Wind-Tunnel Study
,”
Energies
,
4
(
12
), pp.
1916
1936
.
17.
Finnigan
,
J. J.
,
2000
, “
Turbulence in Plant Canopies
,”
Annu. Rev. Fluid Mech.
,
32
(
1
), pp.
519
571
.
18.
Stoesser
,
T.
,
Palau-Salvador
,
G.
,
Rodi
,
W.
, and
Diplas
,
P.
,
2009
, “
Large Eddy Simulation of Turbulent Flow Through Submerged Vegetation
,”
Transp. Porous Media
,
78
(
3
), pp.
347
365
.
19.
Nikora
,
V.
,
Ballio
,
F.
,
Coleman
,
S.
, and
Pokrajac
,
D.
,
2013
, “
Spatially Averaged Flows Over Mobile Beds: Definitions, Averaging Theorems, and Conservation Equations
,”
J. Hydraul. Eng.
,
139
(
8
), pp.
803
811
.
20.
Nepf
,
H. M.
, and
Koch
,
E. W.
,
1999
, “
Vertical Secondary Flows in Submersed Plant-Like Arrays
,”
Limnol. Oceanogr.
,
44
(
4
), pp.
1072
1080
.
21.
Poggi
,
D.
, and
Katul
,
G. G.
,
2008
, “
The Effect of Canopy Roughness Density on the Constitutive Components of the Dispersive Stresses
,”
Exp. Fluids
,
45
(
1
), pp.
111
121
.
22.
Zdravkovich
,
M. M.
,
1987
, “
The Effects of Interference Between Circular Cylinders in Cross Flow
,”
J. Fluids Struct.
,
1
(
2
), pp.
239
261
.
23.
Sumner
,
D.
,
2010
, “
Two Circular Cylinders in Cross-Flow: A Review
,”
J. Fluids Struct.
,
26
(
6
), pp.
849
899
.
24.
Yue
,
W.
,
Meneveau
,
C.
,
Parlange
,
M.
,
Whu
,
W.
,
van Hout
,
R.
, and
Katz
,
J.
,
2007
, “
A Comparative Quadrant Analysis of Turbulence in a Plant Canopy
,”
Water Resour. Res.
,
43
(
5
), p.
W05422
.
25.
Araya
,
D. B.
, and
Dabiri
,
J. O.
,
2015
, “
A Comparison of Wake Measurements in Motor-Driven and Flow-Driven Turbine Experiments
,”
Exp. Fluids
,
56
, p. 150.
26.
Araya
,
D. B.
,
Colonius
,
T.
, and
Dabiri
,
J. O.
,
2016
, “
Transistion to Bluff Body Dynamics in the Wake of Vertical-Axis Wind Turbines
,” (submitted).
You do not currently have access to this content.