Recent experiments have shown that when a dense layer of solid particles surrounding a high-energy reactive material is explosively dispersed, the particles cluster locally leading to jetlike patterns. The formation of these coherent structures has yet to be fully understood and is believed to have its origin in the early moments of the explosive dispersal. This paper focuses on the early moments of an explosive dispersal of particles. In particular, the effect of initial perturbations on both the gas and particulate phase is investigated, considering heavy particles with a low initial particle volume fraction. Two-dimensional simulations are carried out, and results suggest that a distinctive heterogeneity in the form of a single wavelength perturbation in the rapidly expanding detonation products does not have a significant impact on the early evolution of neither the gas phase nor the cloud of particles. In contrast, the equivalent distinctive heterogeneity in the initial particle volume fraction distribution lingers for the duration of our simulations. Developing instabilities in the gas phase and at the inner- and outer-most front of the particle bed display a dominant wavelength equal to the wavelength of the initial perturbation in the particle volume fraction.

References

References
1.
Frost
,
D. L.
,
Gregoire
,
Y.
,
Petel
,
O.
,
Goroshin
,
S.
, and
Zhang
,
F.
,
2012
, “
Particle Jet Formation During Explosive Dispersal of Solid Particles
,”
Phys. Fluids
,
24
(
9
), p.
091109
.10.1063/1.4751876
2.
Ripley
,
R.
,
Donahue
,
L.
, and
Zhang
,
F.
,
2012
, “
Jetting Instabilities of Particles From Explosive Dispersal
,”
AIP Conf. Proc.
,
1426
(
1
), pp.
1615
1618
.10.1063/1.3686594
3.
Boiko
,
V.
,
Kiselev
,
V.
,
Kiselev
,
S.
,
Papyrin
,
A.
,
Poplavskii
,
S.
, and
Fomin
,
V. M.
,
1997
, “
Shock Wave Interaction With a Cloud of Particles
,”
Shock Waves
,
7
(
5
), pp.
275
285
.10.1007/s001930050082
4.
Boiko
,
V.
,
Kiselev
,
V.
,
Kiselev
,
S.
,
Papyrin
,
A.
,
Poplavskii
,
S.
, and
Fomin
,
V. M.
,
1996
, “
Interaction of a Shock Wave With a Cloud of Particles
,”
Combust. Explos. Shock Waves
,
32
(
2
), pp.
191
203
.10.1007/BF02097090
5.
Milne
,
A.
,
Parrish
,
C.
, and
Worland
,
I.
,
2010
, “
Dynamic Fragmentation of Blast Mitigants
,”
Shock Waves
,
20
(
1
), pp.
41
51
.10.1007/s00193-009-0235-5
6.
Rayleigh
,
L.
,
1883
, “
Investigation of the Character of the Equilibrium of an Incompressible Heavy Fluid of Variable Density
,”
Scientific Papers II
,
Cambridge University Press
,
Cambridge, UK
, pp.
200
207
.
7.
Taylor
,
G.
,
1950
, “
The Instability of Liquid Surfaces When Accelerated in a Direction Perpendicular to Their Planes—I
,”
Proc. R. Soc. London A
,
201
(
1065
), pp.
192
196
.10.1098/rspa.1950.0052
8.
Richtmyer
,
R. D.
,
1960
, “
Taylor Instability in Shock Acceleration of Compressible Fluids
,”
Commun. Pure Appl. Math.
,
13
(
2
), pp.
297
319
.10.1002/cpa.3160130207
9.
Meshkov
,
E. E.
,
1969
, “
Instability of the Interface of Two Gases Accelerated by a Shock Wave
,”
Fluid Dyn.
,
4
(
5
), pp.
101
104
.10.1007/BF01015969
10.
Rodriguez
,
V.
,
Saurel
,
R.
,
Jourden
,
J.
, and
Houas
,
L.
,
2013
, “
Solid-Particle Jet Formation Under Shock-Wave Acceleration
,”
Phys. Rev. E
,
88
(
6
), p.
063011
.10.1103/PhysRevE.88.063011
11.
Vorobieff
,
P.
,
Anderson
,
M.
,
Conroy
,
J.
,
White
,
R.
,
Truman
,
C.
, and
Kumar
,
S.
,
2011
, “
Vortex Formation in a Shock-Accelerated Gas Induced by Particle Seeding
,”
Phys. Rev. Lett.
,
106
(
18
), p.
184503
.10.1103/PhysRevLett.106.184503
12.
Anderson
,
M.
,
Vorobieff
,
P.
,
Truman
,
C.
,
Corbin
,
C.
,
Kuehner
,
G.
,
Wayne
,
P.
,
Conroy
,
J.
,
White
,
R.
, and
Kumar
,
S.
,
2015
, “
An Experimental and Numerical Study of Shock Interaction With a Gas Column Seeded With Droplets
,”
Shock Waves
,
25
(
2
), pp.
107
125
.10.1007/s00193-015-0555-6
13.
Brode
,
H. L.
,
1955
, “
Numerical Solutions of Spherical Blast Waves
,”
J. Appl. Phys.
,
26
(
6
), pp.
766
775
.10.1063/1.1722085
14.
Brode
,
H. L.
,
1955
,
The Blast From a Sphere of High-Pressure Gas
(RAND Corporation Paper Series),
Defense Technical Information Center
,
Santa Monica, CA
.
15.
Brode
,
H. L.
,
1959
, “
Blast Wave From a Spherical Charge
,”
Phys. Fluids
,
2
(
2
), pp.
217
229
.10.1063/1.1705911
16.
Boyer
,
D.
,
1960
, “
An Experimental Study of the Explosion Generated by a Pressurized Sphere
,”
J. Fluid Mech.
,
9
(
3
), pp.
401
429
.10.1017/S0022112060001195
17.
Sachdev
,
P.
,
2010
,
Shock Waves and Explosions
,
CRC Press
,
Boca Raton.
18.
Bell
,
G.
,
1951
, “
Taylor Instability on Cylinders and Spheres in the Small Amplitude Approximation
,” Los Alamos Scientific Laboratory, Los Alamos, NM, Technical Report No. LA-1321.
19.
Amendt
,
P.
,
Colvin
,
J.
,
Ramshaw
,
J. D.
,
Robey
,
H.
, and
Landen
,
O.
,
2003
, “
Modified Bell-Plesset Effect With Compressibility: Application to Double-Shell Ignition Target Designs
,”
Phys. Plasmas
,
10
(
3
), pp.
820
829
.10.1063/1.1543926
20.
Epstein
,
R.
,
2004
, “
On the Bell–Plesset Effects: The Effects of Uniform Compression and Geometrical Convergence on the Classical Rayleigh–Taylor Instability
,”
Phys. Plasmas
,
11
(
11
), pp.
5114
5124
.10.1063/1.1790496
21.
Mikaelian
,
K. O.
,
1990
, “
Rayleigh–Taylor and Richtmyer–Meshkov Instabilities and Mixing in Stratified Spherical Shells
,”
Phys. Rev. A
,
42
(
6
), pp.
3400
3420
.10.1103/PhysRevA.42.3400
22.
Mikaelian
,
K. O.
,
1990
, “
Stability and Mix in Spherical Geometry
,”
Phys. Rev. Lett.
,
65
(
8
), pp.
992
995
.10.1103/PhysRevLett.65.992
23.
Mankbadi
,
M. R.
, and
Balachandar
,
S.
,
2012
, “
Compressible Inviscid Instability of Rapidly Expanding Spherical Material Interfaces
,”
Phys. Fluids
,
24
(
3
), p.
034106
.10.1063/1.3689183
24.
Mankbadi
,
M.
, and
Balachandar
,
S.
,
2013
, “
Viscous Effects on the Non-Classical Rayleigh–Taylor Instability of Spherical Material Interfaces
,”
Shock Waves
,
23
(
6
), pp.
603
617
.10.1007/s00193-013-0460-9
25.
Mankbadi
,
M.
, and
Balachandar
,
S.
,
2014
, “
Multiphase Effects on Spherical Rayleigh–Taylor Interfacial Instability
,”
Phys. Fluids
,
26
(
2
), p.
023301
.10.1063/1.4863447
26.
Annamalai
,
S.
,
Parmar
,
M. K.
,
Ling
,
Y.
, and
Balachandar
,
S.
,
2014
, “
Nonlinear Rayleigh-Taylor Instability of a Cylindrical Interface in Explosion Flows
,”
ASME J. Fluids Eng.
,
136
(
6
), p.
060910
.10.1115/1.4026021
27.
Liou
,
M. S.
,
1996
, “
A Sequel to AUSM: AUSM+
,”
J. Comput. Phys.
,
129
(
2
), pp.
364
382
.10.1006/jcph.1996.0256
28.
Haselbacher
,
A.
,
2005
, “
A WENO Reconstruction Algorithm for Unstructured Grids Based on Explicit Stencil Construction
,”
AIAA
Paper No. 2005-0879.10.2514/6.2005-879
29.
Parmar
,
M.
,
Haselbacher
,
A.
, and
Balachandar
,
S.
,
2009
, “
Modeling of the Unsteady Force for Shock-Particle Interaction
,”
Shock Waves
,
19
(
4
), pp.
317
329
.10.1007/s00193-009-0206-x
30.
Parmar
,
M.
,
Haselbacher
,
A.
, and
Balachandar
,
S.
,
2010
, “
Improved Drag Correlation for Spheres and Application to Shock-Tube Experiments
,”
AIAA J.
,
48
(
6
), pp.
1273
1276
.10.2514/1.J050161
31.
Ling
,
Y.
,
Haselbacher
,
A.
, and
Balachandar
,
S.
,
2009
, “
Transient Phenomena in One-Dimensional Compressible Gas-Particle Flows
,”
Shock Waves
,
19
(
1
), pp.
67
81
.10.1007/s00193-009-0190-1
32.
Ling
,
Y.
,
Haselbacher
,
A.
, and
Balachandar
,
S.
,
2011
, “
Importance of Unsteady Contributions to Force and Heating for Particles in Compressible Flows. Part 2: Application to Particle Dispersal by Blast Waves
,”
Int. J. Multiphase Flow
,
37
(
9
), pp.
1013
1025
.10.1016/j.ijmultiphaseflow.2011.07.002
33.
Ling
,
Y.
,
Haselbacher
,
A.
, and
Balachandar
,
S.
,
2011
, “
Importance of Unsteady Contributions to Force and Heating for Particles in Compressible Flows. Part 1: Modeling and Analysis for Shock-Particle Interaction
,”
Int. J. Multiphase Flow
,
37
(
9
), pp.
1026
1044
.10.1016/j.ijmultiphaseflow.2011.07.001
34.
Elgobashi
,
S.
,
1994
, “
On Predicting Particle-Laden Turbulent Flows
,”
Appl. Sci. Res.
,
52
(4), pp.
309
329
.10.1007/BF00936835
35.
Patankar
,
N.
, and
Joseph
,
D.
,
2001
, “
Modeling and Numerical Simulation of Particulate Flows by the Eulerian-Lagrangian Approach
,”
Int. J. Multiphase Flow
,
27
(
10
), pp.
1659
1684
.10.1016/S0301-9322(01)00021-0
36.
Harris
,
S.
, and
Crighton
,
D.
,
1994
, “
Solitons, Solitary Waves, and Voidage Disturbances in Gas-Fluidized Beds
,”
J. Fluid Mech.
,
266
, pp.
243
276
.10.1017/S0022112094000996
37.
Snider
,
D.
,
Rourke
,
P. O.
, and
Andrews
,
M.
,
1998
, “
Sediment Flow in Inclined Vessels Calculated Using a Multiphase Particle-in-Cell Model for Dense Particle Flows
,”
Int. J. Multiphase Flow
,
24
(
8
), pp.
1359
1382
.10.1016/S0301-9322(98)00030-5
38.
Balakrishnan
,
K.
,
2010
, “
On the High Fidelity Simulation of Chemical Explosions and Their Interaction With Solid Particle Clouds
,” Ph.D. thesis, Georgia Institute of Technology.
39.
Balakrishnan
,
K.
, and
Menon
,
S.
,
2011
, “
Characterization of the Mixing Layer Resulting From the Detonation of Heterogeneous Explosive Charges
,”
Flow, Turbul. Combust.
,
87
(
4
), pp.
639
671
.10.1007/s10494-011-9349-9
40.
Ling
,
Y.
,
Wagner
,
J. L.
,
Beresh
,
S. J.
,
Kearney
,
S. P.
, and
Balachandar
,
S.
,
2012
, “
Interaction of a Planar Shock Wave With a Dense Particle Curtain: Modeling and Experiments
,”
Phys. Fluids
,
24
(
11
), p.
113301
.10.1063/1.4768815
41.
Magnaudet
,
J.
, and
Eames
,
I.
,
2000
, “
The Motion of High-Reynolds-Number Bubbles in Inhomogeneous Flows
,”
Annu. Rev. Fluid Mech.
,
32
(
1
), pp.
659
708
.10.1146/annurev.fluid.32.1.659
42.
Parmar
,
M.
,
Haselbacher
,
A.
, and
Balachandar
,
S.
,
2008
, “
On the Unsteady Inviscid Force on Cylinders and Spheres in Subcritical Compressible Flow
,”
Phil. Trans. R. Soc. A
,
366
(
1873
), pp.
2161
2175
.10.1098/rsta.2008.0027
43.
Parmar
,
M.
,
Haselbacher
,
A.
, and
Balachandar
,
S.
,
2011
, “
Generalized Basset–Boussinesq–Oseen Equation for Unsteady Forces on a Sphere in a Compressible Flow
,”
Phys. Rev. Lett.
,
106
(
8
), p.
084501
.10.1103/PhysRevLett.106.084501
44.
Clift
,
R.
, and
Gauvin
,
W.
,
1970
, “
The Motion of Particles in Turbulent Gas Streams
,”
Proc. Chemeca
,
1
, pp.
14
28
.
45.
Sangani
,
A. S.
,
Zhang
,
D. Z.
, and
Prosperetti
,
A.
,
1991
, “
The Added Mass, Basset, and Viscous Drag Coefficients in Nondilute Bubbly Liquids Undergoing Small-Amplitude Oscillatory Motion
,”
Phys. Fluids
,
3
(
12
), pp.
2955
2970
.10.1063/1.857838
46.
Feng
,
Z.
, and
Michaelides
,
E.
,
1996
, “
Unsteady Heat Transfer From a Sphere at Small Peclet Numbers
,”
ASME J. Fluids Eng.
,
118
(
1
), pp.
96
102
.10.1115/1.2817522
47.
Dobratz
,
B.
, and
Crawford
,
P.
,
1985
,
LLNL Explosives Handbook
,
Lawrence Livermore National Laboratory
,
Livermore
.
48.
Lanovets
,
V.
,
Levich
,
V.
,
Rogov
,
N.
,
Tunik
,
Y. V.
, and
Shamshev
,
K.
,
1993
, “
Dispersion of the Detonation Products of a Condensed Explosive With Solid Inclusions
,”
Combust. Explos. Shock Waves
,
29
(
5
), pp.
638
641
.10.1007/BF00783721
49.
Zhang
,
F.
,
Frost
,
D.
,
Thibault
,
P.
, and
Murray
,
S.
,
2001
, “
Explosive Dispersal of Solid Particles
,”
Shock Waves
,
10
(
6
), pp.
431
443
.10.1007/PL00004050
50.
Zhang
,
F.
,
Thibault
,
P.
, and
Link
,
R.
,
2003
, “
Shock Interaction With Solid Particles in Condensed Matter and Related Momentum Transfer
,”
Proc. R. Soc. A
,
459
(
2031
), pp.
705
726
.10.1098/rspa.2002.1045
51.
Haselbacher
,
A.
,
Najjar
,
F. M.
, and
Ferry
,
J. P.
,
2007
, “
An Efficient and Robust Particle-Localization Algorithm for Unstructured Grids
,”
J. Comput. Phys.
,
225
(
2
), pp.
2198
2213
.10.1016/j.jcp.2007.03.018
52.
Subramaniam
,
S.
,
2013
, “
Lagrangian–Eulerian Methods for Multiphase Flows
,”
Prog. Energy Combust. Sci.
,
39
(
2
), pp.
215
245
.10.1016/j.pecs.2012.10.003
53.
Banerjee
,
A.
, and
Andrews
,
M. J.
,
2009
, “
3D Simulations to Investigate Initial Condition Effects on the Growth of Rayleigh-Taylor Mixing
,”
Int. J. Heat Mass Transf.
,
52
(
17–18
), pp.
3906
3917
.10.1016/j.ijheatmasstransfer.2009.03.032
54.
Ramaprabhu
,
P.
,
Dimonte
,
G.
, and
Andrews
,
M.
,
2005
, “
A Numerical Study of the Influence of Initial Perturbations on the Turbulent Rayleigh–Taylor Instability
,”
J. Fluid Mech.
,
536
, pp.
285
319
.10.1017/S002211200500488X
55.
Rollin
,
B.
, and
Andrews
,
M.
,
2013
, “
On Generating Initial Conditions for Turbulence Models: The Case of Rayleigh–Taylor Instability Turbulent Mixing
,”
J. Turbul.
,
14
(
3
), pp.
77
106
.10.1080/14685248.2013.790549
56.
Thornber
,
B.
,
Drikakis
,
D.
,
Youngs
,
D.
, and
Williams
,
R.
,
2010
, “
The Influence of Initial Conditions on Turbulent Mixing Due to Richtmyer-Meshkov Instability
,”
J. Fluid Mech.
,
654
, pp.
99
139
.10.1017/S0022112010000492
57.
Balakrishnan
,
K.
, and
Menon
,
S.
,
2010
, “
On Turbulent Chemical Explosions into Dilute Aluminum Particle Clouds
,”
Combust. Theory Modell.
,
14
(
4
), pp.
583
617
.10.1080/13647830.2010.502974
58.
Balakrishnan
,
K.
,
Ukai
,
S.
, and
Menon
,
S.
,
2011
, “
Clustering and Combustion of Dilute Aluminum Particle Clouds in a Post-Detonation Flow Field
,”
Proc. Combust. Inst.
,
33
(
2
), pp.
2255
2263
.10.1016/j.proci.2010.07.064
You do not currently have access to this content.