Mach number and initial conditions effects on Richtmyer–Meshkov (RM) mixing are studied by the vertical shock tube (VST) at Los Alamos National Laboratory (LANL). At the VST, a perturbed stable light-to-heavy (air–SF6, A = 0.64) interface is impulsively accelerated with a shock wave to induce RM mixing. We investigate changes to both large and small scales of mixing caused by changing the incident Mach number (Ma = 1.3 and 1.45) and the three-dimensional (3D) perturbations on the interface. Simultaneous density (quantitative planar laser-induced fluorescence (PLIF)) and velocity (particle image velocimetry (PIV)) measurements are used to characterize preshock initial conditions and the dynamic shocked interface. Initial conditions and fluid properties are characterized before shock. Using two types of dynamic measurements, time series (N = 5 realizations at ten locations) and statistics (N = 100 realizations at a single location) of the density and velocity fields, we calculate several mixing quantities. Mix width, density-specific volume correlations, density–vorticity correlations, vorticity, enstrophy, strain, and instantaneous dissipation rate are examined at one downstream location. Results indicate that large-scale mixing, such as the mix width, is strongly dependent on Mach number, whereas small scales are strongly influenced by initial conditions. The enstrophy and strain show focused mixing activity in the spike regions.

References

References
1.
Richtmyer
,
R. D.
,
1960
, “
Taylor Instability in Shock Acceleration of Compressible Fluids
,”
Commun. Pure Appl. Math.
,
13
(
2
), pp.
297
319
.
2.
Meshkov
,
E. E.
,
1969
, “
Instability of the Interface of Two Gases Accelerated by a Shock Wave
,”
Fluid Dynamics
,
4
(
5
), pp.
101
104
.
3.
Brouillette
,
M.
, and
Sturtevant
,
B.
,
1994
, “
Experiments on the Richtmyer–Meshkov Instability: Single-Scale Perturbations on a Continuous Interface
,”
J. Fluid Mech.
,
263
, pp.
271
292
.
4.
Vetter
,
M.
, and
Sturtevant
,
B.
,
1995
, “
Experiments on the Richtmyer–Meshkov Instability of an Air/SF6 Interface
,”
Shock Waves
,
4
(
5
), pp.
247
252
.
5.
Dimonte
,
G.
, and
Schneider
,
M.
,
2000
, “
Density Ratio Dependence of Rayleigh–Taylor Mixing for Sustained and Impulsive Acceleration Histories
,”
Phys. Fluids
,
12
(
2
), pp.
304
321
.
6.
Poggi
,
F.
,
Thorembey
,
M. H.
, and
Rodriguez
,
G.
,
1998
, “
Velocity Measurements in Turbulent Gaseous Mixtures Induced by Richtmyer–Meshkov Instability
,”
Phys. Fluids
,
10
(
11
), p.
2698
.
7.
Prestridge
,
K.
,
Rightley
,
P. M.
,
Vorobieff
,
P.
,
Benjamin
,
R. F.
, and
Kurnit
,
N. A.
,
2000
, “
Simultaneous Density-Field Visualization and PIV of a Shock-Accelerated Gas Curtain
,”
Exp. Fluids
,
29
(
4
), pp.
339
346
.
8.
Tomkins
,
C.
,
Kumar
,
S.
,
Orlicz
,
G.
, and
Prestridge
,
K.
,
2008
, “
An Experimental Investigation of Mixing Mechanisms in Shock-Accelerated Flow
,”
J. Fluid Mech.
,
611
, pp.
131
150
.
9.
Balakumar
,
B. J.
,
Orlicz
,
G. C.
,
Ristorcelli
,
J. R.
,
Balasubramanian
,
S.
,
Prestridge
,
K.
, and
Tomkins
,
C.
,
2012
, “
Turbulent Mixing in a Richtmyer–Meshkov Fluid Layer After Reshock: Velocity and Density Statistics
,”
J. Fluid Mech.
,
696
, pp.
67
93
.
10.
Orlicz
,
G. C.
,
Balasubramanian
,
S.
, and
Prestridge
,
K.
,
2013
, “
Incident Shock Mach Number Effects on Richtmyer–Meshkov Mixing in a Heavy Gas Layer
,”
Phys. Fluids
,
25
(
11
), p.
114101
.
11.
Vorobieff
,
P.
,
Mohamed
,
N. G.
,
Tomkins
,
C.
,
Goodenough
,
C.
,
Marr-Lyon
,
M.
, and
Benjamin
,
R. F.
,
2003
, “
Scaling Evolution in Shock-Induced Transition to Turbulence
,”
Phys. Rev. E
,
68
(
6
), p.
065301
.
12.
Weber
,
C. R.
,
Haehn
,
N. S.
,
Oakley
,
J. G.
,
Rothamer
,
D. A.
, and
Bonazza
,
R.
,
2014
, “
An Experimental Investigation of the Turbulent Mixing Transition in the Richtmyer–Meshkov Instability
,”
J. Fluid Mech.
,
748
, pp.
457
487
.
13.
McFarland
,
J.
,
Reilly
,
D.
,
Creel
,
S.
,
McDonald
,
C.
,
Finn
,
T.
, and
Ranjan
,
D.
,
2013
, “
Experimental Investigation of the Inclined Interface Richtmyer–Meshkov Instability Before and After Reshock
,”
Exp. Fluids
,
55
(
1
), pp. 1–14.
14.
Lombardini
,
M.
,
Pullin
,
D. I.
, and
Meiron
,
D. I.
,
2012
, “
Transition to Turbulence in Shock-Driven Mixing: A Mach Number Study
,”
J. Fluid Mech.
,
690
, pp.
203
226
.
15.
Orlicz
,
G. C.
,
Balakumar
,
B. J.
,
Tomkins
,
C. D.
, and
Prestridge
,
K. P.
,
2009
, “
A Mach Number Study of the Richtmyer–Meshkov Instability in a Varicose Heavy-Gas Curtain
,”
Phys. Fluids
,
21
(
6
), p.
064102
.
16.
Mejia-Alvarez
,
R.
,
Wilson
,
B.
,
Leftwich
,
M. C.
,
Martinez
,
A. A.
, and
Prestridge
,
K. P.
,
2015
, “
Design of a Fast Diaphragmless Shock Tube Driver
,”
Shock Waves
,
25
(
6
), pp.
635
650
.
17.
18.
Fairbanks
,
D. F.
, and
Wilke
,
C. R.
,
1950
, “
Diffusion Coefficients in Multicomponent Gas Mixtures
,”
Ind. Eng. Chem.
,
42
(
3
), pp.
471
475
.
19.
Reid
,
R. C.
,
Prausnitz
,
J. M.
, and
Poling
,
B. E.
,
1987
,
The Properties of Gases and Liquids
,
4th ed.
,
McGraw-Hill Book Company
, New York.
20.
Lucas
,
K.
,
1981
, “
Phase Equilibria and Fluid Properties in the Chemical Industry
,”
Chem. Ing. Tech.
,
53
(
12
), pp.
959
960
.
21.
Fuller
,
E. N.
,
Schettler
,
P. D.
, and
Giddings
,
J. C.
,
1966
, “
A New Method for Prediction of Binary Gas-Phase Diffusion Coefficients
,”
Ind. Eng. Chem.
,
58
(
5
), pp.
19
27
.
22.
Yaws
,
C. L.
,
2010
,
Yaws' Transport Properties of Chemicals and Hydrocarbons (Electronic Edition)
,
Knovel
, New York.
23.
Yaws
,
C. L.
,
2012
,
Yaws' Critical Property Data for Chemical Engineers and Chemists
,
Knovel
, New York.
24.
Marrero
,
T. R.
, and
Mason
,
E. A.
,
1972
, “
Gaseous Diffusion Coefficients
,”
J. Phys. Chem. Ref. Data
,
1
(
1
), pp.
3
118
.
25.
Toor
,
H. L.
,
1957
, “
Diffusion in Three-Component Gas Mixtures
,”
AIChE
,
3
(
2
), pp.
198
207
.
26.
Eckstein
,
A. C.
, and
Vlachos
,
P. P.
,
2009
, “
Digital Particle Image Velocimetry (DPIV) Robust Phase Correlation
,”
Meas. Sci. Technol.
,
20
(
5
), p.
055401
.
27.
Ristorcelli
,
J.
,
Gowardhan
,
A.
, and
Grinstein
,
F.
,
2013
, “
Two Classes of Richtmyer–Meshkov Instabilities: A Detailed Statistical Look
,”
Phys. Fluids
,
25
(
4
), p.
044106
.
28.
Zhou
,
J.
,
Adrian
,
R. J.
,
Balachandar
,
S.
, and
Kendall
,
T. M.
,
1999
, “
Mechanisms for Generating Coherent Packets of Hairpin Vortices in Channel Flow
,”
J. Fluid Mech.
,
387
, pp.
353
396
You do not currently have access to this content.