The migration of a bubble inside a two-dimensional converging–diverging channel is investigated numerically. A parametric study is conducted to investigate the effects of the Reynolds and Weber numbers and the amplitude of the converging–diverging channel. It is found that increasing the Reynolds number and the amplitude of the channel increases the oscillation of the bubble and promotes the migration of the bubble toward one of the channel wall. The bubble undergoes oblate–prolate deformation periodically at the early times, which becomes chaotic at the later times. This phenomenon is a culmination of the bubble path instability as well as the Segré–Silberberg effect.

References

References
1.
Haeberle
,
S.
, and
Zengerle
,
R.
,
2007
, “
Microfluidic Platforms for Lab-on-a-Chip Applications
,”
Lab Chip
,
7
(
9
), pp.
1094
1110
.
2.
Stone
,
H. A.
,
Stroock
,
A. D.
, and
Ajdari
,
A.
,
2004
, “
Engineering Flows in Small Devices: Microfluidics Towards a Lab-on-a-Chip
,”
Annu. Rev. Fluid Mech.
,
36
, pp.
318
411
.
3.
Le
,
T.-L.
,
Chen
,
J.-C.
,
Shen
,
B.-C.
,
Hwub
,
F.-S.
, and
Nguyen
,
H.-B.
,
2015
, “
Numerical Investigation of the Thermocapillary Actuation Behavior of a Droplet in a Microchannel
,”
Int. J. Heat Mass Transfer
,
83
, pp.
721
730
.
4.
Tripathi
,
M. K.
,
Sahu
,
K. C.
,
Karapetsas
,
G.
,
Sefiane
,
K.
, and
Matar
,
O. K.
,
2015
, “
Non-Isothermal Bubble Rise: Non-Monotonic Dependence of Surface Tension on Temperature
,”
J. Fluid Mech.
,
763
, pp.
82
108
.
5.
Tripathi
,
M. K.
,
Sahu
,
K. C.
, and
Govindarajan
,
R.
,
2014
, “
Why a Falling Drop Does Not in General Behave Like a Rising Bubble
,”
Nat. Sci. Rep.
,
4
, p.
4771
.
6.
Tripathi
,
M. K.
,
Sahu
,
K. C.
, and
Govindarajan
,
R.
,
2015
, “
Dynamics of an Initially Spherical Bubble Rising in Quiescent Liquid
,”
Nat. Commun.
,
6
, p.
6268
.
7.
Sahu
,
K. C.
, and
Govindarajan
,
R.
,
2005
, “
Stability of Flow Through a Slowly Diverging Pipe
,”
J. Fluid Mech.
,
531
, pp.
325
334
.
8.
Jose
,
B. M.
, and
Cubaud
,
T.
,
2012
, “
Droplet Arrangement and Coalescence in Diverging/Converging Microchannels
,”
Microfluid. Nanofluid.
,
12
(
5
), pp.
687
696
.
9.
Blancher
,
S.
, and
Creff
,
R.
,
2004
, “
Analysis of Convective Hydrodynamics Instabilities in a Symmetric Wavy Channel
,”
Phys. Fluids
,
16
(
10
), pp.
3726
3737
.
10.
Selvarajan
,
S.
,
Tulapurkara
,
E. G.
, and
Ram
,
V. V.
,
1999
, “
Stability Characteristics of Wavy Walled Channel Flows
,”
Phys. Fluids
,
11
(
3
), pp.
579
589
.
11.
Szumbarski
,
J.
, and
Floryan
,
J. M.
,
2006
, “
Transient Disturbance Growth in a Corrugated Channel
,”
J. Fluid Mech.
,
568
, pp.
243
272
.
12.
Duryodhan
,
V.
,
Singh
,
S. G.
, and
Agarwal
,
A.
,
2013
, “
Liquid Flow Through a Diverging Microchannel
,”
Microfluid. Nanofluid.
,
14
, pp.
53
67
.
13.
Jotkar
,
M. R.
,
Swaminathan
,
G.
,
Sahu
,
K. C.
, and
Govindarajan
,
R.
,
2016
, “
Global Linear Instability of Flow Through a Converging-Diverging Channel
,”
ASME J. Fluids Eng.
,
138
(
3
), p.
031301
.
14.
Santacesaria
,
E.
,
Di Serio
,
M.
,
Tesser
,
R.
,
Casale
,
L.
,
Verde
,
D.
,
Turco
,
R.
, and
Bertola
,
A.
,
2009
, “
Use of a Corrugated Plates Heat Exchanger Reactor for Obtaining Biodiesel With Very High Productivity
,”
Energy Fuels
,
23
(
10
), pp.
5206
5212
.
15.
Théron
,
F.
,
Anxionnaz-Minvielle
,
Z.
,
Cabassud
,
M.
,
Gourdon
,
C.
, and
Tochon
,
P.
,
2014
, “
Characterization of the Performances of an Innovative Heat-Exchanger/Reactor
,”
Chem. Eng. Process.
,
82
, pp.
30
41
.
16.
Stone
,
K.
, and
Vanka
,
S.
,
1999
, “
Numerical Study of Developing Flow and Heat Transfer in a Wavy Passage
,”
ASME J. Fluids Eng.
,
121
(
4
), pp.
713
720
.
17.
Gradeck
,
M.
, and
Lebouche
,
M.
,
2000
, “
Two-Phase Gas-Liquid Flow in Horizontal Corrugated Channels
,”
Int. J. Multiphase Flow
,
26
(
3
), pp.
435
443
.
18.
Vlasogiannis
,
P.
,
Karagiannis
,
G.
,
Argyropoulos
,
P.
, and
Bontozoglou
,
V.
,
2002
, “
Air–Water Two-Phase Flow and Heat Transfer in a Plate Heat Exchanger
,”
Int. J. Multiphase Flow
,
28
(
5
), pp.
757
772
.
19.
Nilpueng
,
K.
, and
Wongwises
,
S.
,
2006
, “
Flow Pattern and Pressure Drop of Vertical Upward Gas–Liquid Flow in Sinusoidal Wavy Channels
,”
Exp. Therm. Fluid Sci.
,
30
, pp.
513
534
.
20.
Andreussi
,
P.
,
Paglianti
,
A.
, and
Silva
,
F. S.
,
1999
, “
Dispersed Bubble Flow in Horizontal Pipes
,”
Chem. Eng. Sci.
,
54
(
8
), pp.
1101
1107
.
21.
Murai
,
Y.
,
Fukuda
,
H.
,
Oishi
,
Y.
,
Kodamai
,
Y.
, and
Yamamoto
,
F.
,
2007
, “
Skin Friction Reduction by Large Air Bubbles in a Horizontal Channel Flow
,”
Int. J. Multiphase Flow
,
33
(
2
), pp.
147
163
.
22.
Böhm
,
L.
,
Kurita
,
T.
,
Kimura
,
K.
, and
Kraume
,
M.
,
2014
, “
Rising Behaviour of Single Bubbles in Narrow Rectangular Channels in Newtonian and Non-Newtonian Liquids
,”
Int. J. Multiphase Flow
,
65
, pp.
11
23
.
23.
Segré
,
G.
, and
Silberberg
,
A.
,
1961
, “
Radial Particle Displacements in Poiseuille Flow of Suspensions
,”
Nature
,
189
(
4760
), pp.
209
210
.
24.
Douglas-Hamilton
,
D. H.
,
Smith
,
N. G.
,
Kuster
,
C. E.
,
Vermeiden
,
J. P. W.
, and
Althouse
,
G. C.
,
2005
, “
Capillary-Loaded Particle Fluid Dynamics: Effect on Estimation of Sperm Concentration
,”
J. Androl.
,
26
, pp.
115
122
.
25.
Pan
,
T.-W.
, and
Glowinski
,
R.
,
2002
, “
Direct Simulation of the Motion of Neutrally Buoyant Circular Cylinders in Plane Poiseuille Flow
,”
J. Comput. Phys.
,
181
(
1
), pp.
260
279
.
26.
Matas
,
J.-P.
,
Morris
,
J. F.
, and
Guazzelli
,
E.
,
2009
, “
Lateral Force on a Rigid Sphere in Large-Inertia Laminar Pipe Flow
,”
J. Fluid Mech.
,
621
, pp.
59
67
.
27.
Brackbill
,
J.
,
Kothe
,
D. B.
, and
Zemach
,
C.
,
1992
, “
A Continuum Method for Modeling Surface Tension
,”
J. Comput. Phys.
,
100
(
2
), pp.
335
354
.
28.
Popinet
,
S.
,
2003
, “
Gerris: A Tree-Based Adaptive Solver for the Incompressible Euler Equations in Complex Geometries
,”
J. Comput. Phys.
,
190
(
2
), pp.
572
600
.
You do not currently have access to this content.