Recirculation accompanied by shear cavitation is a key flow feature in annular jet pumps (AJPs). In this study, a high-speed camera was used to capture the recirculation region and various types of cavity clouds. By monitoring the trajectories of the small bubbles, the main recirculation regions under each flow rate ratio were obtained. As the flow rate ratio decreases, the recirculation region continued expanding with the separation point moving upstream, while the reattachment point remained nearly stationary regardless of the decreasing flow rate ratio. Hill's spherical vortex theory was adopted to evaluate the variations of the recirculation regions. Moreover, the minimum local static wall pressure in the recirculation region decreases as well, which can promote the inception and development of shear cavitation. There are numerous vortices simultaneously induced by the large velocity gradient in the shear layer, the core of which becomes a potential site for cavitation. Consequently, with the growth of the recirculation region, three types of cavity clouds, viz., the ribbonlike, annular, and merged cavity clouds, appear in turn. The movement characteristics of these cavity clouds, including their inception, distortion, and collapse, are illustrated based on the high-speed imaging results. The ribbonlike and annular cavity clouds are both induced by the small vortices in the shear layer because of the low local pressure in the vortex core. However, the merged cavity clouds are caused by a combination of several ribbonlike and annular cavity clouds, which provides a larger scale and a longer life span. Hence, the collapse of the merged cavity clouds can cause a large pressure pulsation near the reattachment point of the recirculation region. The corresponding frequency spectra were also demonstrated based on the fast Fourier transform (FFT) method.

References

1.
Winoto
,
S.
,
Li
,
H.
, and
Shah
,
D.
,
2000
, “
Efficiency of Jet Pumps
,”
J. Hydraul. Eng.
,
126
(
2
), pp.
150
156
.
2.
Shimizuy
,
K. S.
,
1983
, “
Studies on the Cavitation Characteristics of Annular Type Jet Pump
,”
Second International Conference on Cavitation
, pp.
77
81
.
3.
Shimizu
,
Y.
,
Nakamura
,
S.
,
Kuzuhara
,
S.
, and
Kurata
,
S.
,
1987
, “
Studies of the Configuration and Performance of Annular Type Jet Pumps
,”
ASME J. Fluids Eng.
,
109
(
3
), pp.
205
212
.
4.
Zhang
,
J.
,
Wang
,
S.
,
Mao
,
J.
,
Yu
,
X.
,
Zhang
,
C.
,
Zhang
,
J.
,
Xu
,
Y.
, and
Sun
,
P.
,
2014
, “
Experimental Study on the Efficiency of Multiple Nozzle Oil Jet Pump for Lubrication System of Steam Turbine
,”
ASME
Paper No. GT2014-26655.
5.
Elger
,
D.
,
McLam
,
E.
, and
Taylor
,
S.
,
1991
, “
A New Way to Represent Jet Pump Performance
,”
ASME J. Fluids Eng.
,
113
(
3
), pp.
439
444
.
6.
Mikhail
,
S.
, and
Abdou
,
H. A.
,
2005
, “
Two-Phase Flow in Jet Pumps for Different Liquids
,”
ASME J. Fluids Eng.
,
127
(
5
), pp.
1038
1042
.
7.
Long
,
X.
,
Han
,
N.
, and
Chen
,
Q.
,
2008
, “
Influence of Nozzle Exit Tip Thickness on the Performance and Flow Field of Jet Pump
,”
J. Mech. Sci. Technol.
,
22
(
10
), pp.
1959
1965
.
8.
Long
,
X.
,
Yao
,
H.
, and
Zhao
,
J.
,
2009
, “
Investigation on Mechanism of Critical Cavitating Flow in Liquid Jet Pumps Under Operating Limits
,”
Int. J. Heat Mass Transfer
,
52
(
9
), pp.
2415
2420
.
9.
Watanabe
,
M.
,
Kinugasa
,
K.
,
Adachi
,
H.
, and
Mori
,
H.
,
2014
, “
Flow-Induced Vibration Suppression of Jet Pump in Boiling Water Reactor by Slip Joint Extension
,”
ASME
Paper No. ICONE22-30700.
10.
Cunningham
,
R. G.
,
Hansen
,
A.
, and
Na
,
T.
,
1970
, “
Jet Pump Cavitation
,”
ASME J. Fluids Eng.
,
92
(
3
), pp.
483
492
.
11.
Lu
,
H.
, and
Shang
,
H.
,
1987
, “
Mechanism and Calculation Theory of Jet Pump Cavitation
,”
Sci. Sin. Ser. A
,
30
(
11
), pp.
1174
1187
.
12.
Long
,
X.
,
Chen
,
Q.
,
Han
,
N.
,
Cai
,
B.
, and
Wang
,
F.
,
2010
, “
Numerical Simulation on Cavitating Flow Within Jet Pump
,”
J. Drain. Irrig. Mach. Eng.
,
28
(
1
), pp.
7
11
.
13.
Elger
,
D. F.
,
Taylor
,
S. J.
, and
Liou
,
C. P.
,
1994
, “
Recirculation in an Annular-Type Jet Pump
,”
ASME J. Fluids Eng.
,
116
(
4
), pp.
735
740
.
14.
Long
,
X.
,
Zeng
,
Q.
,
Yang
,
X.
, and
Xiao
,
L.
,
2012
,
Structure Optimization of an Annular Jet Pump Using Design of Experiment Method and CFD
(IOP Conference Series: Earth and Environmental Science),
IOP Publishing
,
London
, p.
052020
.
15.
Long
,
X.
,
Yan
,
H.
,
Zhang
,
S.
, and
Yao
,
X.
,
2010
, “
Numerical Simulation for Influence of Throat Length on Annular Jet Pump Performance
,”
J. Drain. Irrig. Mach. Eng.
,
28
(
3
), pp.
198
201
.
16.
Xiao
,
L.
,
Long
,
X.
,
Wu
,
W.
,
Yan
,
H.
, and
Kang
,
Y.
,
2013
,
Numerical Investigation on the Impact of the Converging Angle of the Suction Chamber on Annular Jet Pumps
(IOP Conference Series: Materials Science and Engineering),
IOP Publishing
,
London
, p.
072016
.
17.
Xiao
,
L.
,
Long
,
X.
,
Li
,
X.
,
Zeng
,
Q.
, and
Yang
,
X.
,
2013
, “
Numerical Investigation on the Recirculation in Annular Jet Pumps
,”
J. Mech. Sci. Technol.
,
27
(
6
), pp.
1603
1609
.
18.
Katz
,
J.
, and
O'hern
,
T.
,
1986
, “
Cavitation in Large Scale Shear Flows
,”
ASME J. Fluids Eng.
,
108
(
3
), pp.
373
376
.
19.
Kermeen
,
R.
, and
Parkin
,
B.
,
1957
, “
Incipient Cavitation and Wake Flow Behind Sharp-Edged Disks
,” DTIC Document No. 85-4.
20.
Young
,
J.
, and
Holl
,
J. W.
,
1966
, “
Effects of Cavitation on Periodic Wakes Behind Symmetric Wedges
,”
ASME J. Fluids Eng.
,
88
(
1
), pp.
163
176
.
21.
Arndt
,
R. E.
,
1981
, “
Cavitation in Fluid Machinery and Hydraulic Structures
,”
Annu. Rev. Fluid Mech.
,
13
(
1
), pp.
273
326
.
22.
Katz
,
J.
,
1984
, “
Cavitation Phenomena Within Regions of Flow Separation
,”
J. Fluid Mech.
,
140
, pp.
397
436
.
23.
Belahadji
,
B.
,
Franc
,
J.
, and
Michel
,
J.
,
1995
, “
Cavitation in the Rotational Structures of a Turbulent Wake
,”
J. Fluid Mech.
,
287
, pp.
383
403
.
24.
Iyer
,
C. O.
, and
Ceccio
,
S. L.
,
2002
, “
The Influence of Developed Cavitation on the Flow of a Turbulent Shear Layer
,”
Phys. Fluids
,
14
(
10
), pp.
3414
3431
.
25.
Gopalan
,
S.
,
Katz
,
J.
, and
Knio
,
O.
,
1999
, “
The Flow Structure in the Near Field of Jets and Its Effect on Cavitation Inception
,”
J. Fluid Mech.
,
398
, pp.
1
43
.
26.
Arndt
,
R. E.
,
2002
, “
Cavitation in Vortical Flows
,”
Annu. Rev. Fluid Mech.
,
34
(
1
), pp.
143
175
.
27.
Luo
,
X.
,
Ji
,
B.
,
Peng
,
X.
,
Xu
,
H.
, and
Nishi
,
M.
,
2012
, “
Numerical Simulation of Cavity Shedding From a Three-Dimensional Twisted Hydrofoil and Induced Pressure Fluctuation by Large-Eddy Simulation
,”
ASME J. Fluids Eng.
,
134
(
4
), p.
041202
.
28.
Ji
,
B.
,
Luo
,
X.
,
Wu
,
Y.
,
Peng
,
X.
, and
Duan
,
Y.
,
2013
, “
Numerical Analysis of Unsteady Cavitating Turbulent Flow and Shedding Horse-Shoe Vortex Structure Around a Twisted Hydrofoil
,”
Int. J. Multiphase Flow
,
51
, pp.
33
43
.
29.
Ji
,
B.
,
Luo
,
X.
,
Arndt
,
R. E.
, and
Wu
,
Y.
,
2014
, “
Numerical Simulation of Three Dimensional Cavitation Shedding Dynamics With Special Emphasis on Cavitation–Vortex Interaction
,”
Ocean Eng.
,
87
, pp.
64
77
.
30.
Amromin
,
E.
,
2014
, “
Development and Validation of Computational Fluid Dynamics Models for Initial Stages of Cavitation
,”
ASME J. Fluids Eng.
,
136
(
8
), p.
081303
.
31.
Huang
,
B.
,
Young
,
Y. L.
,
Wang
,
G.
, and
Shyy
,
W.
,
2013
, “
Combined Experimental and Computational Investigation of Unsteady Structure of Sheet/Cloud Cavitation
,”
ASME J. Fluids Eng.
,
135
(
7
), p.
071301
.
32.
Peng
,
X. X.
,
Ji
,
B.
,
Cao
,
Y. T.
,
Xu
,
L. H.
,
Zhang
,
G. P.
,
Luo
,
X. W.
, and
Long
,
X. P.
,
2016
, “
Combined Experimental Observation and Numerical Simulation of the Cloud Cavitation With U-Type Flow Structures on Hydrofoils
,”
Int. J. Multiphase Flow
,
79
, pp.
10
22
.
33.
Wu
,
Q.
,
Huang
,
B.
,
Wang
,
G. Y.
, and
Gao
,
Y.
,
2015
, “
Experimental and Numerical Investigation of Hydroelastic Response of a Flexible Hydrofoil in Cavitating Flow
,”
Int. J. Multiphase Flow
,
74
, pp.
19
33
.
34.
Ji
,
B.
,
Luo
,
X. W.
,
Arndt
,
R. E. A.
,
Peng
,
X. X.
, and
Wu
,
Y. L.
,
2015
, “
Large Eddy Simulation and Theoretical Investigations of the Transient Cavitating Vortical Flow Structure Around a NACA66 Hydrofoil
,”
Int. J. Multiphase Flow
,
68
, pp.
121
134
.
35.
Ooi
,
K. K.
,
1981
, “
Scale Effects on Cavitation Inception in Submerged Jets
,”
Ph.D. dissertation
, California Institute of Technology, Pasadena, CA.
36.
Pauchet
,
J.
,
Retailleau
,
A.
, and
Woillez
,
J.
,
1992
, “
The Prediction of Cavitation Inception in Turbulent Water Jets
,” Cavitation and Multiphase Flow Forum, SED, pp.
p149
158
.
37.
Edge
,
B. A.
,
Paterson
,
E. G.
, and
Trujillo
,
M. F.
,
2007
, “
A Scaling Law for Cavitation Inception in Circular Jet Flows
,”
ASME
Paper No. FEDSM2007-37362.
38.
Abdulaziz
,
A.
,
2014
, “
Performance and Image Analysis of a Cavitating Process in a Small Type Venturi
,”
Exp. Therm. Fluid Sci.
,
53
, pp.
40
48
.
39.
Coleman
,
H. W.
, and
Steele
,
W. G.
,
2009
,
Experimentation, Validation, and Uncertainty Analysis for Engineers
,
Wiley
,
New York
.
40.
Xiao
,
L.
, and
Long
,
X.
,
2015
, “
Cavitating Flow in Annular Jet Pumps
,”
Int. J. Multiphase Flow
,
71
, pp.
116
132
.
41.
Yule
,
A.
, and
Damou
,
M.
,
1991
, “
Investigations of Ducted Jets
,”
Exp. Therm. Fluid Sci.
,
4
(
4
), pp.
469
490
.
42.
Brennen
,
C. E.
,
2013
,
Cavitation and Bubble Dynamics
,
Cambridge University Press
,
Cambridge, UK
.
43.
Franc
,
J. P.
, and
Michel
,
J. M.
,
2006
,
Fundamentals of Cavitation
,
Springer Science & Business Media
,
Berlin
.
44.
Xiao
,
L.
,
Long
,
X.
, and
Yang
,
X.
,
2014
, “
Numerical Investigation on the Influence of Nozzle Lip Thickness on the Flow Field and Performance of an Annular Jet Pump
,”
J. Harbin Inst. Technol. (New Ser.)
,
31
(
3
), pp.
59
67
.
45.
Hill
,
M. J. M.
,
1894
, “
On a Spherical Vortex
,”
Proc. R. Soc. London
,
55
(
331–335
), pp.
219
224
.
46.
Saffman
,
P. G.
,
1992
,
Vortex Dynamics
,
Cambridge University Press
,
Cambridge, UK
.
47.
O'hern
,
T.
,
1990
, “
An Experimental Investigation of Turbulent Shear Flow Cavitation
,”
J. Fluid Mech.
,
215
, pp.
365
391
.
48.
Kundu
,
P.
,
Cohen
,
I.
, and
Dowling
,
D.
,
2012
,
Fluid Mechanics
,
Academic Press
,
Waltham, MA
.
49.
Glezer
,
A.
,
1988
, “
The Formation of Vortex Rings
,”
Phys. Fluids (1958–1988)
,
31
(
12
), pp.
3532
3542
.
50.
Cerretelli
,
C.
, and
Williamson
,
C.
,
2003
, “
The Physical Mechanism for Vortex Merging
,”
J. Fluid Mech.
,
475
, pp.
41
77
.
You do not currently have access to this content.