An algebraic relationship between turbulent dissipation rate and von Karman length are used to dismiss the transport equation of turbulent dissipation rate in standard kε (SKE) turbulence model. Meanwhile, a recalibrated Bradshaw's assumption is built based on the data from a boundary layer flow of turbulent flat plate simulated by direct numerical simulation (DNS). The JL model is reformed to a one-equation model which only depends on the turbulent energy, so the new model can also be called kinetic-energy dependent only (KDO) turbulence model. As the KDO model is using the von Karman length scale, it can automatically adjust to fit the resolved structures of the local flow. Results will be shown for the boundary layer flow on a turbulent flat plate, and the external flows of an NACA4412 airfoil, an ONERA-M6 wing, a three dimension delta wing, and an NACA0012 airfoil at deep stall.

References

References
1.
Hoyas
,
S.
, and
Jimenez
,
J.
,
2006
, “
Scaling of the Velocity Fluctuations in Turbulent Channels Up to reτ=2003
,”
Phys. Fluids
,
18
(011702), pp.
1
4
.
2.
Menter
,
F.
,
Kuntz
,
M.
, and
Langtry
,
R.
,
2003
, “
Ten Years of Industrial Experience With the SST Turbulence Model
,”
Turbul. Heat Mass Transfer 4
,
14
(
1
), pp.
625
632
.
3.
Spalart
,
P. R.
,
2000
, “
Strategies for Turbulence Modelling and Simulations
,”
Int. J. Heat Fluid Flow
,
21
(
3
), pp.
252
263
.
4.
Scupi
,
A.
,
Avital
,
E.
,
Dinu
,
D.
,
Williams
,
J.
, and
Munjiza
,
A.
,
2015
, “
Large Eddy Simulation of Flows Around a Kite Used as an Auxiliary Propulsion System
,”
ASME J. Fluids Eng.
,
137
(
101301
), pp.
1
8
.
5.
Posa
,
A.
,
Lippolis
,
A.
, and
Balaras
,
E.
,
2015
, “
Large-Eddy Simulation of a Mixed-Flow Pump at Off-Design Conditions
,”
ASME J. Fluids Eng.
,
137
(
101302
), pp.
1
11
.
6.
Sidebottom
,
W.
,
Ooi
,
A.
, and
Jones
,
D.
,
2015
, “
A Parametric Study of Turbulent Flow Past a Circular Cylinder Using Large Eddy Simulation
,”
ASME J. Fluids Eng.
,
137
(091202), pp.
1
13
.
7.
Jakirlic
,
S.
, and
Maduta
,
R.
,
2015
, “
Extending the Bounds of Steady RANS Closures: Toward an Instability-Sensitive Reynolds Stress Model
,”
Int. J. Heat Fluid Flow
,
51
, pp.
175
194
.
8.
Spalart
,
P. R.
,
Jou
,
W.-H.
,
Strelets
,
M.
, and
Allmaras
,
S. R.
,
1997
, “
Comments on the Feasibility of LES for Wings, and on a Hybrid RANS/LES Approach
,”
Advances in DNS/LES
,
C.
Liu
, and
Z.
Liu
, eds.,
Greyden Press
,
Columbus, OH
, pp.
137
147
.
9.
Speziale
,
C.
,
1998
, “
Turbulence Modeling for Time-Dependent RANS and VLES: A Review
,”
AIAA J.
,
36
(
2
), pp.
173
184
.
10.
Girimaji
,
S.
,
2006
, “
Partially-Averaged Navier–Stokes Model for Turbulence: A Reynolds-Averaged Navier–Stokes to Direct Numerical Simulation Bridging Method
,”
ASME J. Appl. Mech.
,
73
(
3
), pp.
413
421
.
11.
Jeong
,
E.
, and
Girimaji
,
S.
,
2006
, “
Partially Averaged Navier–Stokes (PANS) Method for Turbulence Simulations-Flow Past a Square Cylinder
,”
ASME J. Fluids Eng.
,
132
(
12
), p.
121203
.
12.
Batten
,
P.
,
Goldberg
,
U.
, and
Chakravarthy
,
S.
,
2004
, “
Interfacing Statistical Turbulence Closures With Large-Eddy Simulation
,”
AIAA J.
,
42
(
3
), pp.
485
492
.
13.
Spalart
,
P. R.
,
Deck
,
S.
,
Shur
,
M.
, and
Squires
,
K. D.
,
2006
, “
A New Version of Detached-Eddy Simulation, Resistant to Ambiguous Grid Densities
,”
Theor. Comput. Fluid Dyn.
,
20
(
3
), pp.
181
195
.
14.
Shur
,
M.
,
Spalart
,
P. R.
,
Strelets
,
M.
, and
Travin
,
A. K.
,
2008
, “
A Hybrid RANS-LES Approach With Delayed-DES and Wall-Modelled LES Capabilities
,”
Int. J. Heat Fluids Flow
,
29
(
6
), pp.
1638
1649
.
15.
Im
,
H. S.
, and
Zha
,
G. C.
,
2014
, “
Delayed Detached Eddy Simulation of Airfoil Stall Flows Using High-Order Schemes
,”
ASME J. Fluids Eng.
,
137
(
4
), pp.
1
12
.
16.
Menter
,
F. R.
, and
Egorov
,
Y.
,
2010
, “
The Scale-Adaptive Simulation Method for Unsteady Turbulent Flow Predictions. Part 1: Theory and Model Description
,”
Flow Turbul. Combust.
,
85
(
1
), pp.
113
138
.
17.
Spalart
,
P. R.
, and
Allmaras
,
S. R.
,
1992
, “
A One-Equation Turbulence Model for Aerodynamic Flows
,”
AIAA
Paper No. 92-0439.
18.
Wilcox
,
D. C.
,
1988
, “
Reassessment of Scale-Determining Equation for Advanced Turbulence Models
,”
AIAA J.
,
26
(
11
), pp.
1299
1310
.
19.
Menter
,
F. R.
,
1992
, “
Improved Two-Equation k–w Turbulence Model for Aerodynamic Flows
,” Technical Report No. 103975.
20.
Roe
,
P
.,
1981
, “
Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes
,”
J. Comput. Phys.
,
43
(
2
), pp.
357
372
.
21.
van Leer
,
B.
,
1982
, “
Flux Vector Splitting for the Euler Equations
,”
Proceedings of the Eighth International Conference on Numerical Methods in Fluid Dynamics
,
E.
Krause
, ed.,
Springer-Verlag
,
Berlin, Germany
, pp.
501
512
.
22.
Wilcox
,
D. C.
,
1994
,
Turbulence Modeling for CFD
,
DCW Industries
,
La Canada, CA
, pp.
88
89
.
23.
Jones
,
W. P.
, and
Launder
,
B. E.
,
1972
, “
The Calculation of Low-Reynolds-Number Phenomena With a Two-Equation Model of Turbulence
,”
Int. J. Heat Mass Transfer
,
16
, pp.
1119
1130
.
24.
Sutherland
,
W.
,
1983
, “
The Viscosity of Gases and Molecular Force
,”
Philos. Mag.
,
5
, pp.
507
531
.
25.
Menter
,
F. R.
,
1997
, “
Eddy Viscosity Transport Equations and Their Relation to the k–ε Model
,”
ASME J. Fluids Eng.
,
119
(
4
), pp.
876
884
.
26.
Xu
,
J.-L.
, and
Yan
,
C.
,
2010
, “
A One-Equation Scale-Adaptive Simulation Model
,”
Phys. Gases
,
5
, pp.
78
82
.
27.
Wen
,
X. Q.
,
Liu
,
Y. W.
,
Fang
,
L.
, and
Lu
,
L. P.
,
2013
, “
Improving the Capability of k–ω SST Turbulent Model for Predicting Stall Characteristics of Airfoil
,”
J. Beijing Univ. Aeronaut. Astronaut.
,
31
, pp.
1127
1132
.
28.
Liu
,
J. Y.
,
2012
, “
An Improved SST Turbulence Model for Hypersonic Flows
,”
Acta Aeronaut. Astronaut. Sin.
,
33
, pp.
2193
2201
.
29.
Schlatter
,
P.
, and
Orlu
,
R.
,
2010
, “
Assessment of Direct Numerical Simulation Data of Turbulent Boundary Layers
,”
J. Fluid Mech.
,
659
, pp.
116
126
.
30.
She
,
Z. S.
, and
Leveque
,
E.
,
1997
, “
Universal Scaling Laws in Fully Developed Turbulence
,”
Phys. Rev. Lett.
,
72
, pp.
336
339
.
31.
She
,
Z. S.
,
Chen
,
X.
,
Wu
,
Y.
, and
Hussain
,
F.
,
2010
, “
New Perspective in Statistical Modeling of Wall-Bounded Turbulence
,”
Acta Mech. Sin.
,
26
(
6
), pp.
847
861
.
32.
Hanjalic
,
K.
, and
Stosic
,
N.
,
1983
, “
Hysteresis of Turbulent Stresses in Wall Flows Subjected to Periodic Disturbances
,”
Fourth Symposium on Turbulent Shear Flows
, pp.
287
330
.
33.
Fan
,
S.
,
Lakshminarayana
,
B.
, and
Barnett
,
M.
,
1993
, “
Low-Reynolds-Number k–ε Model for Unsteady Turbulent Boundary-Layer Flows
,”
AIAA J.
,
31
(
10
), pp.
1777
1784
.
34.
Reynolds
,
W. C.
,
1979
, “
Computation of Turbulent Flows
,”
Ann. Rev. Fluid Mech.
,
8
, pp.
183
208
.
35.
Yang
,
Z.
, and
Shih
,
T.-H.
,
1993
, “
New Time Scale Based k–ε Model for Near-Wall Turbulence
,”
AIAA J.
,
12
, pp.
301
318
.
36.
Patel
,
V. C.
,
Rodi
,
W.
, and
Scheuerer
,
G.
,
1984
, “
Turbulence Models for Near-Wall and Low Reynolds Number Flows: A Review
,”
AIAA J.
,
23
, pp.
1308
1319
.
37.
Wieghardt
,
K.
, and
Tillman
,
W.
,
1951
, “
On the Turbulent Friction Layer for Rising Pressure
,” Technical Report No. 1314.
38.
Coles
,
D.
, and
Wadock
,
A. J.
,
1976
, “
Flying-Hot-Wire Study of Flow Past an NACA 4412 Airfoil at Maximum Lift
,”
AIAA J.
,
4
, pp.
321
328
.
39.
Rogers
,
S. E.
, and
Kwak
,
D.
,
1988
, “
An Upwind Differencing Scheme for the Time-Accurate Incompressible Navier–Stokes Equations
,”
AIAA
Paper No. 88-2583.
40.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
41.
Schmitt
,
V.
, and
Charpin
,
F.
,
1979
, “
Pressure Distributions on the ONERA-M6 Wing at Transonic Mach Number
,”
Experimental Data Base for Computer Program Assessment
, AGARD, Technical Report No. 138.
42.
Luckring
,
J. M.
, and
Hummel
,
D.
,
2009
, “
What was Learned From the New VFE-2 Experiments
,” RTO, Technical Report No. 113.
43.
Swalwell
,
K. E.
,
2005
, “
The Effect of Turbulence on Stall of Horizontal Axis Wind Turbines
,” Ph.D. thesis, Monash University, Clayton, Australia.
You do not currently have access to this content.