The impact of Gurney flaplike strips, of different geometric configurations and heights, on the aerodynamic characteristics and the tip vortices generated by a reverse delta wing (RDW) was investigated via force-balance measurement and particle image velocimetry (PIV). The addition of side-edge strips (SESs) caused a leftward shift of the lift curve, resembling a conventional trailing-edge flap. The large lift increment overwhelmed the corresponding drag increase, thereby leading to an improved lift-to-drag ratio compared to the baseline wing. The lift and drag coefficients were also found to increase with the strip height. The SES-equipped wing also produced a strengthened vortex compared to its baseline wing counterpart. The leading-edge strips (LESs) were, however, found to persistently produce a greatly diffused vortex flow as well as a small-than-baseline-wing lift in the prestall α regime. The downward LES delivered a delayed stall and an increased maximum lift coefficient compared to the baseline wing. The LESs provide a potential wingtip vortex control alternative, while the SESs can enhance the aerodynamic performance of the RDW.

References

1.
Morton
,
S.
,
Forsythe
,
J.
,
Mitchell
,
A.
, and
Hajek
,
D.
,
2002
, “
Detached-Eddy Simulations and Reynolds-Averaged Navier–Stokes Simulations of Delta Wing Vortical Flowfields
,”
ASME J. Fluids Eng.
,
24
(
4
), pp.
924
932
.
2.
Wang
,
F. Y.
,
Milanovic
,
I. M.
,
Zaman
,
K. B.
, and
Povinelli
,
L. A.
,
2005
, “
A Quantitative Comparison of Delta Wing Vortices in the Near-Wake for Incompressible and Supersonic Free Streams
,”
ASME J. Fluids Eng.
,
127
(
6
), pp.
1071
1084
.
3.
Liu
,
T.
,
Makhmalbaf
,
M. M.
,
Vewen Ramasamy
,
R.
,
Kode
,
S. S.
, and
Merati
,
P. P.
,
2015
, “
Skin Friction Fields and Surface Dye Patterns on Delta Wings in Water Flows
,”
ASME J. Fluids Eng.
,
137
(
7
), pp.
202
214
.
4.
Lowson
,
M. V.
, and
Riley
,
A. J.
,
1995
, “
Vortex Breakdown Control by Delta Wing Geometry
,”
J. Aircr.
,
32
(
4
), pp.
832
838
.
5.
Nelson
,
R. C.
, and
Pelletier
,
A.
,
2003
, “
The Unsteady Aerodynamics of Slender Wings and Aircraft Undergoing Large Amplitude Maneuvers
,”
Prog. Aerosp. Sci.
,
39
(2–3), pp.
185
248
.
6.
Gursul
,
I.
,
Wang
,
Z.
, and
Vardaki
,
E.
,
2007
, “
Review of Flow Control Mechanisms of Leading-Edge Vortices
,”
Prog. Aerosp. Sci.
,
43
(7–8), pp.
246
270
.
7.
Gerhardt
,
H. A.
,
1996
, “
Supersonic Natural Laminar Flow Wing
,” U.S. Patent No. 5,538,201.
8.
Altaf
,
A.
,
Omar
,
A. A.
,
Asrar
,
W.
, and
Jamaluddin
,
H. B. L.
,
2011
, “
Study of the Reverse Delta Wing
,”
J. Aircr.
,
48
(
1
), pp.
277
286
.
9.
Rozhdestven
,
K. V.
,
2006
, “
Wing-in-Ground Effect Vehicles
,”
Prog. Aerosp. Sci.
,
42
(
3
), pp.
211
283
.
10.
Lee
,
T.
, and
Su
,
Y. Y.
,
2012
, “
Wingtip Vortex Control Via the Use of a Reverse Half-Delta Wing
,”
Exp. Fluids
,
52
(
6
), pp.
1593
1609
.
11.
Lee
,
T.
, and
Choi
,
S.
,
2015
, “
Wingtip Vortex Control Via Tip-Mounted Half-Delta Wings of Different Geometric Configurations
,”
ASME J. Fluids Eng.
,
137
, pp.
1
9
.
12.
Zhan
,
J. X.
, and
Wang
,
J. J.
,
2004
, “
Experimental Study on Gurney Flap and Apex Flap on a Delta Wing
,”
J. Aircr.
,
41
(
6
), pp.
1379
1383
.
13.
Wang
,
J. J.
,
Li
,
Y. C.
, and
Choi
,
K.-S.
,
2008
, “
Gurney Flap—Lift Enhancement, Mechanisms and Applications
,”
Prog. Aerosp. Sci.
,
44
(
1
), pp.
22
47
.
14.
Payne
,
F. M.
,
Ng
,
T. T.
, and
Nelson
,
R. C.
,
1989
, “
Seven Hole Probe Measurement of Leading Edge Vortex Flows
,”
Exp. Fluids
,
7
(1), pp.
1
8
.
15.
Wu
,
H.
,
Miorini
,
R. L.
,
Tan
,
D.
, and
Katz
,
J.
,
2012
, “
Turbulence Within the Tip-Leakage Vortex of an Axial Waterjet Pump
,”
AIAA J.
,
50
(
11
), pp.
2574
2587
.
16.
Kaplan
,
S. M.
,
Altman
,
A.
, and
Ol
,
M.
,
2007
, “
Wake Vorticity Measurements for Low Aspect Ratio Wings at Low Reynolds Number
,”
J. Aircr.
,
44
(
1
), pp.
241
251
.
You do not currently have access to this content.