For the cloud cavitation around slender axisymmetric projectiles, a two-dimensional (2D) numerical method was based on the mixture approach with Singhal cavitation model and modified renormalization-group (RNG) k–ε turbulence model, and a three-dimensional (3D) method was established with large-eddy simulation (LES) and volume of fraction (VOF) approach. The commercial computational fluid dynamic (CFD) software fluent is used for the 2D simulation, and the open source code OpenFOAM is adopted for the 3D calculation. Experimental and numerical results were presented on a typical case, in which the projectile moves with a quasi-constant axial speed. Simulation results agree well with experimental results. An analysis of the evolution of cavitating flow was performed, and the related physical mechanism was discussed. Results demonstrate that shedding cavity collapse plays an important role in the generation and acceleration of re-entry jet, which is the main reason for the instability of cloud cavitation. The 2D Reynolds-Averaged Navier–Stokes (RANS) method can represent the physical phenomena effectively. The 3D LES method can give an efficient simulation on the shedding vortices, and considerable accurate shapes of shedding cavities are captured.

References

References
1.
Brennen
,
C. E.
,
1995
,
Cavitation and Bubble Dynamics
,
Oxford University Press
,
New York
, pp.
217
240
.
2.
Stutz
,
B.
, and
Legoupil
,
S.
,
2003
, “
X-Ray Measurements Within Unsteady Cavitation
,”
Exp. Fluids
,
35
(
2
), pp.
130
138
.
3.
Stutz
,
B.
, and
Reboud
,
J.
,
1997
, “
Experiments on Unsteady Cavitation
,”
Exp. Fluids
,
22
(
3
), pp.
191
198
.
4.
Stutz
,
B.
, and
Reboud
,
J. L.
,
2000
, “
Measurements Within Unsteady Cavitation
,”
Exp. Fluids
,
29
(
6
), pp.
545
552
.
5.
Callenaere
,
M.
,
Franc
,
J. P.
,
Michel
,
J. M.
, and
Riondet
,
M.
,
2001
, “
The Cavitation Instability Induced by the Development of a Re-Entrant Jet
,”
J. Fluid Mech.
,
444
, pp.
223
256
.
6.
Singhal
,
A. K.
,
Athavale
,
M. M.
,
Li
,
H.
, and
Jiang
,
Y.
,
2002
, “
Mathematical Basis and Validation of the Full Cavitation Model
,”
ASME J. Fluids Eng.
,
124
(
3
), pp.
617
624
.
7.
Kunz
,
R. F.
,
Boger
,
D. A.
, and
Stinebring
,
D. R.
,
1998
, “
A Preconditioned Navier–Stokes Method for Two-Phase Flows With Application to Cavitation
,”
Comput. Fluids
,
29
(
8
), pp.
849
875
.
8.
Merkle
,
C. L.
,
Feng
,
J.
, and
Buelow
,
P. E. O.
,
1998
, “
Computational Modeling of the Dynamics of Sheet Cavitation
,”
3rd International Symposium on Cavitation
, Grenoble, France, pp.
47
54
.
9.
Arndt
,
R. E. A.
,
2002
, “
Cavitation in Vortical Flows
,”
Annu. Rev. Fluid Mech.
,
34
(
1
), pp.
143
175
.
10.
Zhou
,
L.
, and
Wang
,
Z.
,
2008
, “
Numerical Simulation of Cavitation Around a Hydrofoil and Evaluation of a RNG κ-ε Model
,”
ASME J. Fluids Eng.
,
130
(
1
), p.
011302
.
11.
Coutier-Delgosha
,
O.
,
Stutz
,
B.
,
Vabre
,
A.
, and
Legoupil
,
S.
,
2007
, “
Analysis of Cavitating Flow Structure by Experimental and Numerical Investigations
,”
J. Fluid Mech.
,
578
, pp.
171
222
.
12.
Coutier-Delgosha
,
O.
,
Reboud
,
J.
, and
Delannoy
,
Y.
,
2003
, “
Numerical Simulation of the Unsteady Behaviour of Cavitating Flows
,”
Int. J. Numer. Methods Fluids
,
42
(
5
), pp.
527
548
.
13.
Coutier-Delgosha
,
O.
,
Fortes-Patella
,
R.
, and
Reboud
,
J. L.
,
2003
, “
Evaluation of the Turbulence Model Influence on the Numerical Simulations of Unsteady Cavitation
,”
ASME J. Fluids Eng.
,
125
(
1
), pp.
38
45
.
14.
Coutier-Delgosha
,
O.
,
Deniset
,
F. O.
,
Astolfi
,
J. A.
, and
Leroux
,
J.-B.
,
2007
, “
Numerical Prediction of Cavitating Flow on a Two-Dimensional Symmetrical Hydrofoil and Comparison to Experiments
,”
ASME J. Fluids Eng.
,
129
(
3
), pp.
279
292
.
15.
Wu
,
J. Y.
,
Wang
,
G. Y.
, and
Shyy
,
W.
,
2005
, “
Time-Dependent Turbulent Cavitating Flow Computations With Interfacial Transport and Filter-Based Models
,”
Int. J. Numer. Methods Fluids
,
49
(
7
), pp.
739
761
.
16.
Hu
,
C.
,
Wang
,
G.
,
Chen
,
G.
, and
Huang
,
B.
,
2014
, “
A Modified PANS Model for Computations of Unsteady Turbulence Cavitating Flows
,”
Sci. China Phys. Mech. Astron.
,
57
(
10
), pp.
1967
1976
.
17.
Ji
,
B.
,
Luo
,
X.
,
Arndt
,
R. E. A.
, and
Wu
,
Y.
,
2014
, “
Numerical Simulation of Three Dimensional Cavitation Shedding Dynamics With Special Emphasis on Cavitation-Vortex Interaction
,”
Ocean Eng.
,
87
, pp.
64
77
.
18.
Huang
,
B.
,
Wang
,
G. Y.
, and
Zhao
,
Y.
,
2014
, “
Numerical Simulation Unsteady Cloud Cavitating Flow With a Filter-Based Density Correction Model
,”
J. Hydrodyn.
,
26
(
1
), pp.
26
36
.
19.
Huang
,
B.
, and
Wang
,
G. Y.
,
2011
, “
Partially Averaged Navier–Stokes Method for Time-Dependent Turbulent Cavitating Flows
,”
J. Hydrodyn.
,
23
(
1
), pp.
26
33
.
20.
Ji
,
B.
,
Luo
,
X.
,
Wu
,
Y.
,
Peng
,
X.
, and
Xu
,
H.
,
2012
, “
Partially-Averaged Navier–Stokes Method With Modified k-Epsilon Model for Cavitating Flow Around a Marine Propeller in a Non-Uniform Wake
,”
Int. J. Heat Mass Transfer
,
55
(
23–24
), pp.
6582
6588
.
21.
Bensow
,
R. E.
, and
Bark
,
G.
,
2010
, “
Implicit LES Predictions of the Cavitating Flow on a Propeller
,”
ASME J. Fluids Eng.
,
132
(
4
), p.
041302
.
22.
Ji
,
B.
,
Luo
,
X. W.
,
Arndt
,
R. E. A.
,
Peng
,
X.
, and
Wu
,
Y.
,
2015
, “
Large Eddy Simulation and Theoretical Investigations of the Transient Cavitating Vortical Flow Structure Around a NACA66 Hydrofoil
,”
Int. J. Multiphase Flow
,
68
, pp.
121
134
.
23.
Wang
,
G.
, and
Ostoja-Starzewski
,
M.
,
2007
, “
Large Eddy Simulation of a Sheet/Cloud Cavitation on a NACA0015 Hydrofoil
,”
Appl. Math. Modell.
,
31
(
3
), pp.
417
447
.
24.
Huang
,
B.
,
Zhao
,
Y.
, and
Wang
,
G.
,
2014
, “
Large Eddy Simulation of Turbulent Vortex-Cavitation Interactions in Transient Sheet/Cloud Cavitating Flows
,”
Comput. Fluids
,
92
, pp.
113
124
.
25.
Dittakavi
,
N.
,
Chunekar
,
A.
, and
Frankel
,
S.
,
2010
, “
Large Eddy Simulation of Turbulent-Cavitation Interactions in a Venturi Nozzle
,”
ASME J. Fluids Eng.
,
132
(
12
), p.
121301
.
26.
Roohi
,
E.
,
Zahiri
,
A. P.
, and
Passandideh-Fard
,
M.
,
2013
, “
Numerical Simulation of Cavitation Around a Two-Dimensional Hydrofoil Using VOF Method and LES Turbulence Model
,”
Appl. Math. Model.
,
37
(
9
), pp.
6469
6488
.
27.
Yu
,
X.
,
Huang
,
C.
,
Du
,
T.
,
Liao
,
L.
,
Wu
,
X.
,
Zheng
,
Z.
, and
Wang
,
Y.
,
2014
, “
Study of Characteristics of Cloud Cavity Around Axisymmetric Projectile by Large Eddy Simulation
,”
ASME J. Fluids Eng.
,
136
(
5
), p.
051303
.
28.
Ji
,
B.
,
Luo
,
X.
,
Peng
,
X.
, and
Wu
,
Y.
,
2013
, “
Three-Dimensional Large Eddy Simulation and Vorticity Analysis of Unsteady Cavitating Flow Around a Twisted Hydrofoil
,”
J. Hydrodyn.
,
25
(
4
), pp.
510
519
.
29.
Wei
,
Y. P.
,
Wang
,
Y. W.
,
Fang
,
X.
,
Huang
,
C. G.
, and
Duan
,
Z. P.
,
2011
, “
A Scaled Underwater Launch System Accomplished by Stress Wave Propagation Technique
,”
Chin. Phys. Lett.
,
28
(
2
), p.
024601
.
30.
Dular
,
M.
,
Bachert
,
R.
,
Stoffel
,
B.
, and
Sirok
,
B.
,
2005
, “
Experimental Evaluation of Numerical Simulation of Cavitating Flow Around Hydrofoil
,”
Eur. J. Mech. B/Fluids
,
24
(
4
), pp.
522
538
.
31.
Wang
,
Y.
,
Huang
,
C.
,
Fang
,
X.
,
Du
,
T.
, and
Yu
,
X.
,
2013
, “
Characteristics of the Re-Entry Jet in the Cloud Cavitating Flow Over a Submerged Axisymmetric Projectile (in Chinese)
,”
Chin. J. Hydrodyn.
,
28
(
1
), pp.
23
29
.
32.
Iga
,
Y.
,
Hashizume
,
K.
, and
Yoshida
,
Y.
,
2011
, “
Numerical Analysis of Three Types of Cavitation Surge in Cascade
,”
ASME J. Fluids Eng.
,
133
(
7
), p.
071102
.
You do not currently have access to this content.