It is well known that the hydrodynamic drag on particles is significantly enhanced close to a plane or curved boundary. This enhancement impedes the movement of the particles in both the parallel and the normal directions with respect to the wall. In the presence of a temperature gradient, the Brownian movement of particles induces the phenomenon of thermophoresis, which results in the steady motion of the particles toward the colder domains of the flow field. This paper examines the effect of the enhanced wall drag on the thermophoretic movement of the nanoparticles in a Newtonian fluid, at short distances (0–10 radii) from a flat, horizontal wall. The effect of the flow shear lift on the thermophoretic motion of the particles close to a horizontal wall is also examined. It is observed that the movement of the particles toward the plane wall is significantly retarded because of the enhanced drag and that it, actually, causes particle accumulation close to the plane wall. It is also observed that the lift, which is induced by the relative Brownian movement, does not have an effect on the average motion of particles toward the wall and does not play an important role on the deposition of particles.

Reference

Reference
1.
Mabberley
,
D. J.
,
1985
,
Jupiter Botanicus: Robert Brown of the British Museum
,
J. Cramer
,
Braunschweig
.
2.
Haw
,
M.
,
2005
, “
Einstein's Random Walk
,”
Phys. World
,
18
(
1
), pp.
19
22
.
3.
Einstein
,
A.
,
1905
, “
Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen
,”
Ann. Phys.
,
17
, pp.
549
560
.
4.
Li
,
A.
, and
Ahmadi
,
G.
,
1992
, “
Dispersion and Deposition of Spherical Particles From Point Sources in a Turbulent Channel Flow
,”
Aerosol Sci. Technol.
,
16
(
4
), pp.
209
226
.
5.
Michaelides
,
E. E.
,
2014
,
Nanofluidics–Thermodynamic and Transport Properties
,
Springer
,
New York
.
6.
Michaelides
,
E. E.
,
2015
, “
Brownian Movement and Thermophoresis of Nanoparticles in Liquids
,”
Int. J. Heat Mass Transfer
,
81
, pp.
179
187
.
7.
Epstein
,
P.
,
1929
, “
Zur theorie des radiometers
,”
Z. Phys.
,
54
(
7
), pp.
537
563
.
8.
Brock
,
J. R.
,
1962
, “
On the Theory of Thermal Forces Acting on Aerosol Particles
,”
J. Colloid Interface Sci.
,
17
(
8
), pp.
768
780
.
9.
Talbot
,
L.
,
Cheng
,
R. K.
,
Schefer
,
R. W.
, and
Willis
,
D. R.
,
1980
, “
Thermophoresis of Particles in a Heated Boundary Layer
,”
J. Fluid Mech.
,
101
(
4
), pp.
737
758
.
10.
McNab
,
G. S.
, and
Meisen
,
A.
,
1973
, “
Thermophoresis in Liquids
,”
J. Colloid Interface Sci.
,
44
(
2
), pp.
339
346
.
11.
Faxen
,
H.
,
1922
, “
Der Widerstand gegen die Bewegung einer starren Kugel in einer zum den Flussigkeit, die zwischen zwei parallelen Ebenen Winden eingeschlossen ist
,”
Ann. Phys.
,
68
, pp.
89
119
.
12.
Happel
,
J.
, and
Brenner
,
H.
,
1986
,
Low Reynolds Number Hydrodynamics
,
4th printing
,
Martinus Nijhoff
,
Dordrecht
.
13.
Saffman
,
P. G.
,
1965
, “
The Lift on a Small Sphere in a Slow Shear Flow
,”
J. Fluid Mech.
,
22
(
2
), pp.
385
398
.
14.
Mei
,
R.
,
1992
, “
An Approximate Expression of the Shear Lift on a Spherical Particle at Finite Reynolds Numbers
,”
Int. J. Multiphase Flow
,
18
(
1
), pp.
145
160
.
15.
Berg
,
J. C.
,
2010
,
An Introduction to Interfaces and Colloids—The Bridge to Nano-Science
,
World Scientific
,
Singapore
.
16.
Dandy
,
D. S.
, and
Dwyer
,
H. A.
,
1990
, “
A Sphere in Shear Flow at Finite Reynolds Number: Effect of Particle Lift, Drag and Heat Transfer
,”
J. Fluid Mech.
,
216
, pp.
381
412
.
17.
Feng
,
Z. G.
, and
Michaelides
,
E. E.
,
2002
, “
Inter-Particle Forces and Lift on a Particle Attached to a Solid Boundary in Suspension Flow
,”
Phys. Fluids
,
14
(
1
), pp.
49
60
.
18.
Takemura
,
F.
,
2004
, “
Migration Velocities of Spherical Solid Particles Near a Vertical Wall for Reynolds Numbers From 0.1 to 5
,”
Phys. Fluids
,
16
(
1
), pp.
204
207
.
19.
Russel
,
W. R.
,
Saville
,
D. A.
, and
Schowalter
,
W. R.
,
1989
,
Colloidal Dispersions
,
Cambridge University Press
,
Cambridge
.
20.
Portela
,
L. M.
,
Cota
,
P.
, and
Oliemans
,
R. V. A.
,
2002
, “
Numerical Study of the Near-Wall Behaviour of Particles in Turbulent Pipe Flows
,”
Powder Technol.
,
125
(
2
), pp.
149
157
.
21.
Michaelides
,
E. E.
,
2006
,
Particles, Bubbles and Drops—Their Motion, Heat and Mass Transfer
,
World Scientific Publishers
,
Singapore
.
22.
Michaelides
,
E. E.
,
2003
, “
Hydrodynamic Force and Heat/Mass Transfer From Particles, Bubbles and Drops: The Freeman Scholar Lecture
,”
ASME J. Fluids Eng.
,
125
(
2
), pp.
209
238
.
23.
Feng
,
Z.-G.
, and
Michaelides
,
E. E.
,
2003
, “
Equilibrium Position for a Particle in a Horizontal Shear Flow
,”
Int. J. Multiphase Flow
,
29
(
6
), pp.
943
957
.
24.
Patankar
,
N. A.
,
Huang
,
P. Y.
,
Ko
,
T.
, and
Joseph
,
D. D.
,
2001
, “
Lift-Off of a Single Particle in Newtonian and Viscoelastic Fluids by Direct Numerical Simulation
,”
J. Fluid Mech.
,
438
, pp.
67
100
.
You do not currently have access to this content.