The research on characteristics of impinging jet has a long history and focuses mainly on the circular jets, whereas the impingement of noncircular jets, such as elliptical jets, receives much less attention. This paper investigated liquid sheet resulting from the oblique collision of two elliptical jets at short impact distance. The elliptical liquid jets contract and collide obliquely at impact point, forming a sheet in the form of a leaf bounded by a thicker rim. An improved theoretical model, taking jet contraction into account, for two elliptical impinging jets is established. The sheet features are obtained by combining the conservation equations between the liquid jet and sheet with the force balance equations of the sheet rim. The calculated sheet shapes are compared with the experiments, and the results show good agreement. The experimental results also indicate that the liquid sheet formed by elliptical jets tends to be larger and more unstable than that formed by circular jets. Based on the model, the effects of axial ratio and impact distance on the sheet characteristics, such as sheet shape and thickness, are also studied.

References

References
1.
Taylor
,
G. I.
,
1960
, “
Formation of Thin Flat Sheets of Water
,”
Proc. R. Soc. London, Ser. A
,
259
(
1296
), pp.
1
17
.
2.
Hasson
,
D.
, and
Peck
,
R. E.
,
1964
, “
Thickness Distribution in a Sheet Formed by Impinging Jets
,”
AIChE J.
,
10
(
5
), pp.
752
754
.
3.
Ibrahim
,
E. A.
, and
Przekwas
,
A. J.
,
1991
, “
Impinging Jets Atomization
,”
Phys. Fluids A
,
3
(
12
), pp.
2981
2987
.
4.
Naber
,
J. D.
, and
Reitz
,
R. D.
,
1988
, “
Modeling Engine Spray/Wall Impingement
,”
SAE
Paper No. 880107.
5.
Choo
,
Y. J.
, and
Kang
,
B. S.
,
2007
, “
The Effect of Jet Velocity Profile on the Characteristics of Thickness and Velocity of the Liquid Sheet Formed by Two Impinging Jets
,”
Phys. Fluids
,
19
(
11
), p.
112101
.
6.
Bush
,
J. W. M.
, and
Hasha
,
A. E.
,
2004
, “
On the Collision of Laminar Jets: Fluid Chains and Fishbones
,”
J. Fluids Mech.
,
511
, pp.
285
310
.
7.
Bremond
,
N.
, and
Villermaux
,
E.
,
2006
, “
Atomization by Jet Impact
,”
J. Fluids Mech.
,
549
, pp.
273
306
.
8.
Yang
,
L.
,
Zhao
,
F.
,
Fu
,
Q.
, and
Cui
,
K.
,
2014
, “
Liquid Sheet Formed by Impingement of Two Viscous Jets
,”
J. Propul. Power
,
30
(
4
), pp.
1016
1026
.
9.
Miller
,
K. D.
, Jr.
,
1960
, “
Distribution of Spray From Impinging Liquid Jets
,”
J. Appl. Phys.
,
31
(
6
), pp.
1132
1133
.
10.
Inamura
,
T.
, and
Shirota
,
M.
,
2014
, “
Effect of Velocity Profile of Impinging Jets on Sheet Characteristics Formed by Impingement of Two Round Liquid Jets
,”
Int. J. Multiphase Flow
,
60
, pp.
149
160
.
11.
Shen
,
Y. B.
, and
Poulikakos
,
D.
,
1998
, “
Thickness Variation of Liquid Sheet Formed by Two Impinging Jets Using Holographic Interferometry
,”
ASME J. Fluids Eng.
,
120
(
3
), pp.
482
487
.
12.
Choo
,
Y. J.
, and
Kang
,
B.
,
2001
, “
Parametric Study on Impinging-Jet Liquid Sheet Thickness Distribution Using an Interferometric Method
,”
Exp. Fluids
,
31
(
1
), pp.
56
62
.
13.
Choo
,
Y. J.
, and
Kang
,
B.
,
2002
, “
The Velocity Distribution of the Liquid Sheet Formed by Two Low-Speed Impinging Jets
,”
Phys. Fluids
,
14
(
2
), pp.
622
627
.
14.
Choo
,
Y. J.
, and
Kang
,
B.
,
2003
, “
A Study on the Velocity Characteristics of the Liquid Elements Produced by Two Impinging Jets
,”
Exp. Fluids
,
34
(
6
), pp.
655
661
.
15.
Inamura
,
T.
, and
Shirota
,
M.
,
2014
, “
Effect of Velocity Profile of Impinging Jets on Sheet Characteristics Formed by Impingement of Two Round Liquid Jets
,”
Int. J. Multiphase Flow
,
60
, pp.
149
160
.
16.
Kang
,
B. S.
,
Shen
,
Y. B.
, and
Poulikakos
,
D.
,
1995
, “
Holography Experiments in the Breakup Region of a Liquid Sheet Formed by Two Impinging Jets
,”
Atomization Sprays
,
5
(
485
), pp.
387
391
.
17.
Li
,
R.
, and
Ashgriz
,
N.
,
2006
, “
Characteristics of Liquid Sheets Formed by Two Impinging Jets
,”
Phys. Fluids
,
18
(
8
), p.
087104
.
18.
Jung
,
S.
,
Hoath
,
S. D.
,
Martin
,
G. D.
, and
Hutchings
,
I. M.
,
2010
, “
Atomization Patterns Produced by the Oblique Collision of Two Newtonian Liquid Jets
,”
Phys. Fluids
,
22
(
4
), p.
042101
.
19.
Ma
,
D. J.
,
Chen
,
X. D.
,
Khare
,
P.
, and
Yang
,
V.
,
2011
, “
Atomization Patterns and Breakup Characteristics of Liquid Sheets Formed by Two Impinging Jets
,”
AIAA
Paper No. 2011-97.
20.
Liebermann
,
H. H.
,
1979
, “
Planar and Cylindrical Jet Streaming of Water and of Molten Fe40Ni40B20 Alloy
,”
J. Appl. Phys.
,
50
(
11
), pp.
6673
6778
.
21.
Chyczewski
,
T. S.
, Jr.
,
1996
, “
A Time Dependent Three Dimensional Numerical Study of Supersonic Rectangular Jet Flow and Noise Using the Full Navier–Stokes Equations
,”
Ph.D dissertation
, University of Pennsylvania State, State College, PA.
22.
Gordeev
,
S.
,
Stoopel
,
L.
, and
Stieglitz
,
R.
,
2009
, “
Turbulent Liquid Metal Flow in Rectangular Shaped Contraction Nozzles for Target Applications
,”
Int. J. Comput. Fluid Dyn.
,
23
(
6
), pp.
477
493
.
23.
Chen
,
N.
, and
Yu
,
H. D.
,
2014
, “
Mechanism of Axis Switching in Low Aspect-Ratio Rectangular Jets
,”
Comput. Math. Appl.
,
67
(
2
), pp.
437
444
.
24.
Rayleigh
,
L.
,
1879
, “
On the Capillary Phenomena of Jets
,”
Proc. R. Soc. London
,
29
(
196–199
), pp.
71
97
.
25.
Rayleigh
,
L.
,
1889–1890
, “
On the Tension of Recently Formed Surfaces
,”
Proc. R. Soc. London
,
47
, pp.
281
287
.
26.
Bohr
,
N.
,
1909
, “
Determination of the Surface-Tension of Water by the Method of Jet Vibration
,”
Philos. Trans. R. Soc. London
,
209
(
441–458
), pp.
281
317
.
27.
Bechtel
,
S. E.
,
Forest
,
M. G.
,
Holm
,
D.
, and
Lin
,
K. J.
,
1988
, “
One-Dimensional Closure Models for Three Dimensional Incompressible Viscoelastic Free Jets: Von Karman Flow Geometry and Elliptical Cross-Section
,”
J. Fluids Mech.
,
196
, pp.
241
262
.
28.
Hong
,
J. G.
,
Ku
,
K. W.
, and
Lee
,
C. W.
,
2011
, “
Numerical Simulation of the Cavitating Flowin an Elliptical Nozzle
,”
Atomization Sprays
,
21
(
3
), pp.
237
248
.
29.
Hong
,
J. G.
,
Ku
,
K. W.
, and
Lee
,
C. W.
,
2011
, “
Effect of Internal Flow Structure in Circular and Elliptical Nozzles on Spray Characteristics
,”
Atomization Sprays
,
21
(
8
), pp.
655
672
.
30.
Kasyap
,
T. V.
,
Sivakumar
,
D.
, and
Raghunandan
,
B. N.
,
2008
, “
Breakup of Liquid Jets Emanating From Elliptical Orifices at Low Flow Conditions
,”
Atomization Sprays
,
18
(
7
), pp.
645
668
.
31.
Amini
,
G.
, and
Dolatabadi
,
A.
,
2012
, “
Axis-Switching and Breakup of Low-Speed Elliptic Liquid Jets
,”
Int. J. Multiphase Flow
,
42
, pp.
96
103
.
32.
Cho
,
Y. H.
,
Lee
,
S. W.
, and
Yoon
,
W. S.
,
2004
, “
Orifice Diameter Ratio Effect on the Mixing Performances for Split Triplet Injectors
,”
J. Propul. Power
,
20
(
1
), pp.
69
75
.
33.
Jung
,
K.
,
Khil
,
T.
, and
Yoon
,
Y.
,
2006
, “
Effects of Internal Flow on Breakup Characteristics of Like-Doublet Injectors
,”
J. Propul. Power
,
22
(
3
), pp.
653
660
.
34.
Fu
,
Q.
,
Yang
,
L.
,
Cui
,
K.
, and
Zhuang
,
F.
,
2014
, “
Effects of Orifice Geometry on Gelled Propellants Sprayed From Impinging-Jet Injectors
,”
J. Propul. Power
,
30
(
4
), pp.
1113
1117
.
35.
Bechtel
,
S. E.
,
1989
, “
The Oscillation of Slender Elliptical Invscid and Newtonian Jets: Effects of Surface Tension, Inertia, Viscosity, and Gravity
,”
ASME J. Appl. Mech.
,
56
(
4
), pp.
968
974
.
You do not currently have access to this content.