This paper deals with the computational predictability of aerodynamic losses in a turbine nozzle guide vane (NGV) flow. The paper shows that three-dimensional (3D) computations of Reynolds-Averaged Navier Stokes (RANS) equations have the ability to adequately represent viscous losses in the presence of laminar flows, transitional regions, and fully turbulent flow areas in the NGV of an high pressure (HP) turbine stage. The Axial Flow Turbine Research Facility (AFTRF) used for the present experimental results has an annular NGV assembly and a 29-bladed HP turbine rotor spinning at 1330 rpm. The NGV inlet and exit Reynolds numbers based on midspan axial chord are around 300,000 and 900,000, respectively. A general purpose finite-volume 3D flow solver with a shear stress transport (SST) k–ω turbulence model is employed. The current computational study benefits from these carefully executed aerodynamic experiments in the NGV of the AFTRF. The grid independence study is performed with static pressure coefficient distribution at the midspan of the vane and the total pressure coefficient at the NGV exit. The effect of grid structure on aerodynamic loss generation is emphasized. The flow transition effect and the influence of corner fillets at the vane–endwall junction are also studied. The velocity distributions and the total pressure coefficient at the NGV exit plane are in very good agreement with the experimental data. This validation study shows that the effect of future geometrical modifications on the turbine endwall surfaces will be predicted reasonably accurately. The current study also indicates that an accurately defined turbine stage geometry, a properly prepared block-structured/body-fitted grid, a state-of-the-art transitional flow implementation, inclusion of fillets, and realistic boundary conditions coming from high-resolution turbine experiments are all essential ingredients of a successful turbine NGV aerodynamic loss quantification via computations. This validation study forms the basis for the successful future generation of nonaxisymmetric endwall surface modifications in AFTRF research efforts.
Skip Nav Destination
Article navigation
Research-Article
Factors Influencing Computational Predictability of Aerodynamic Losses in a Turbine Nozzle Guide Vane Flow
Özhan H. Turgut,
Özhan H. Turgut
Department of Aerospace Engineering,
The Pennsylvania State University,
University Park, PA 16802
e-mail: Ozhan_Turgut@gmail.com
The Pennsylvania State University,
University Park, PA 16802
e-mail: Ozhan_Turgut@gmail.com
Search for other works by this author on:
Cengiz Camci
Cengiz Camci
Professor
Fellow ASME
Department of Aerospace Engineering,
The Pennsylvania State University,
223 Hammond Building,
University Park, PA 16802
e-mail: cxc11@psu.edu
Fellow ASME
Department of Aerospace Engineering,
The Pennsylvania State University,
223 Hammond Building,
University Park, PA 16802
e-mail: cxc11@psu.edu
Search for other works by this author on:
Özhan H. Turgut
Department of Aerospace Engineering,
The Pennsylvania State University,
University Park, PA 16802
e-mail: Ozhan_Turgut@gmail.com
The Pennsylvania State University,
University Park, PA 16802
e-mail: Ozhan_Turgut@gmail.com
Cengiz Camci
Professor
Fellow ASME
Department of Aerospace Engineering,
The Pennsylvania State University,
223 Hammond Building,
University Park, PA 16802
e-mail: cxc11@psu.edu
Fellow ASME
Department of Aerospace Engineering,
The Pennsylvania State University,
223 Hammond Building,
University Park, PA 16802
e-mail: cxc11@psu.edu
1Present address: Turbomachinery Aerodynamics, Praxair, Inc., 175 East Park Drive, Tonawanda, NY 14150.
Contributed by the Fluids Engineering Division of ASME for publication in the JOURNAL OF FLUIDS ENGINEERING. Manuscript received April 17, 2015; final manuscript received September 28, 2015; published online January 5, 2016. Assoc. Editor: Frank C. Visser.
J. Fluids Eng. May 2016, 138(5): 051103 (13 pages)
Published Online: January 5, 2016
Article history
Received:
April 17, 2015
Revised:
September 28, 2015
Citation
Turgut, Ö. H., and Camci, C. (January 5, 2016). "Factors Influencing Computational Predictability of Aerodynamic Losses in a Turbine Nozzle Guide Vane Flow." ASME. J. Fluids Eng. May 2016; 138(5): 051103. https://doi.org/10.1115/1.4031879
Download citation file:
Get Email Alerts
Related Articles
Assessment of Transition Modeling and Compressibility Effects in a Linear Cascade of Turbine Nozzle Guide Vanes
J. Fluids Eng (May,2017)
Investigation of Vortex Shedding and Wake-Wake Interaction in a Transonic Turbine Stage Using Laser-Doppler-Velocimetry and Particle-Image-Velocimetry
J. Turbomach (January,2006)
Unsteady Flow Field of an Axial-Flow Turbine Rotor at a Low Reynolds Number
J. Turbomach (April,2007)
Related Chapters
Cavitating Structures at Inception in Turbulent Shear Flow
Proceedings of the 10th International Symposium on Cavitation (CAV2018)
Fluid Mechanics
Centrifugal Compressors: A Strategy for Aerodynamic Design and Analysis
Fluidelastic Instability of Tube Bundles in Single-Phase Flow
Flow-Induced Vibration Handbook for Nuclear and Process Equipment