Authors introduce an ultrahigh-temperature (i.e., 2500–3000 °C) continuous fluidized bed furnace, in which the key operating variable is specific electrical resistance of the bed. A correlation has been established to predict the specific electrical resistance for the natural graphite-based precursors. Fluid dynamics models have been validated with the data from a fully functional prototype reactor. Data collected demonstrated that the difference between the calculated and measured values of specific resistance is approximately 25%; due to chaotic nature of electrothermal fluidized bed processes, this discrepancy was deemed acceptable. Optimizations proposed allow producing natural graphite-based end product with the purity level of 99.98 + wt. %C for battery markets.

References

References
1.
2012
, “
Grades of Graphite and Specifications: Product GE-3
,”
Product Brochure
,
Zavalyevskiy Graphite, Ltd.
,
Kyiv, Ukraine
.
2.
1998
, “
Signature Graphite and Carbon: Products 9800, 2590
,”
Product Brochure
,
Superior Graphite Co.
,
Chicago, IL
.
3.
Barsukov
,
I.
,
Gallego
,
M.
, and
Doninger
,
J.
,
2006
, “
Novel Materials for Electrochemical Power Sources—Introduction of PUREBLACK® Carbons
,”
J. Power Sources
,
153
(
2
), pp.
288
299
.
4.
2008
, “
Analytical Procedures for TIMREX® Graphite and Coke
,”
A Synopsis of Analytical Procedures
,
Timcal, Ltd. Group
,
Bodio, Switzerland
.
5.
Linden
,
D.
, and
Reddy
,
T. B.
,
2001
,
Handbook of Batteries
,
3rd ed.
,
McGraw-Hill
,
New York
.
6.
Sarkas
,
H. W.
, and
Barsukov
,
I. V.
,
2014
, “
Zinc Anode Alkaline Electrochemical Cells Containing Bismuth
,” U.S. Patent No. U.S. 2014/0227592A1.
7.
Spahr
,
M. E.
,
Yoshio
,
M.
,
Brodd
,
R. J.
, and
Kozawa
,
A.
, eds.,
2009
, “
Carbon Conductive Additives for Lithium-Ion Batteries
,”
Lithium-Ion Batteries
,
Springer Science + Business Media
,
New York
, p.
117
.
8.
Juri
,
G.
,
Wilhelm
,
H. A.
, and
L’Heureux
,
J.
,
2010
,
High-Purity Graphite Powders for High Performance
,
Timcal, Ltd. Group
,
Bodio, Switzerland
.
9.
Lia
,
Y. F.
,
Zhu
,
S. F.
, and
Wang
,
L.
,
2013
, “
Purification of Natural Graphite by Microwave Assisted Acid Leaching
,”
Carbon
,
55
(
4
), pp.
377
378
.
10.
Lazenby
,
H.
,
2013
, “
Northern Graphite Develops Proprietary Purification Technology
,”
Mining Weekly International
,
The Creamer Media, Bedford View
,
Johannesburg, South Africa
.
11.
Barsukov
,
I. V.
,
Doninger
,
J. E.
,
Zaleski
,
P.
, and
Derwin
,
D.
,
2000
, “
Recent Developments on the Use of Graphite in Alkaline Battery Systems
,”
ITE Lett. Batteries, New Technol. Med.
,
2
(
1
), pp.
106
110
.
12.
Doninger
,
J. E.
,
Anderson
,
S.
,
Booth
,
P. R.
,
Zaleski
,
P. L.
,
Girkant
,
R. J.
,
Derwin
,
D. J.
,
Gallego
,
M. A.
,
Huerta
,
T.
and
Uribe
,
G.
,
2006
, “
New Developments in the Advanced Graphite for Lithium-Ion Batteries
,”
New Carbon Based Materials for Electrochemical Energy Storage Systems: Batteries, Supercapacitors and Fuel Cells
,
I. V
.
Barsukov
,
C. J
.
Johnson
,
J. E
.
Doninger
, and
V. Z
.
Barsukov
, eds.,
Springer
,
The Netherlands
, pp.
213
229
.
13.
Tamashausky
,
A. V.
,
2006
,
An Introduction to Synthetic Graphite
,
Asbury Graphite Mills
,
Asbury, NJ
, p.
12
.
14.
Booth
,
P.
,
Doninger
,
J. E.
,
Barsukov
,
I. V.
,
Zak
,
M. S.
,
Taylor
,
R. L.
,
Ayala
,
J. A.
, and
Tandon
,
D.
,
2003
, “
Thermally Modified Carbon Blacks for Various Type Applications and a Process for Producing Same
,” U.S. Patent No. 20050063892-A1.
15.
2014
, “
Creating Safer Ways to Recycle Batteries
,”
Bloomberg
,
New York
.
16.
2008
,
National Battery Collaborative (NBC) Roadmap
,
U.S. Department of Energy
,
Washington, DC
.
17.
Gupta
,
C. K.
, and
Sathiyamoorthy
,
D.
,
1999
,
Fluid Bed Technology in Materials Processing
,
CRC Press
,
Boca Raton
, p.
528
.
18.
Borodulia
,
V. A.
,
1973
,
High-Temperature Processes in Electro-Thermal Fluidized Bed
,
Nauka I Technika Publishing House
,
Minsk, USSR
, p.
173
.
19.
Gubynskyi
,
M. V.
,
Fedorov
,
S. S.
,
Livitan
,
M. V.
,
Gogotsi
,
O. G.
,
Barsukov
,
I. V.
, and
Rohatgi
,
U.
,
2013
, “
Analysis of Energy Efficiency of Furnaces for High-Temperature Heat Treatment of Carbonaceous Materials
,”
J. Metall. Min. Ind.
,
2
, pp.
88
91
.
20.
Zak
,
M. S.
,
Harrison
,
W. M.
, and
Doninger
,
J. E.
,
2005
, “
Method and Apparatus for Heat Treatment of Particulates in an Electro-Thermal Fluidized Bed Furnace and Resultant Products
,” U.S. Patent No. 2005/0062205A1.
21.
Goldberger
,
W. M.
,
Carney
,
P. R.
, and
Reed
,
A. K.
,
1987
, “
Thermal Purification of Natural Mineral Carbons
,” European Patent No. 87300021.
22.
Goldberger
,
W. M.
,
1968
, “
Method of Generating a Plasma Arc With a Fluidized Bed as One Electrode
,” U.S. Patent No. 3,404,078.
23.
Gubynskyi
,
M. V.
,
Barsukov
,
I. V.
,
Fedorov
,
S. S.
,
Livitan
,
M. V.
,
Gogotsi
,
O. G.
, and
Rohatgi
,
U. S.
,
2013
, “
Study of Aerodynamic Properties of Continuous High Temperature Reactors
,”
ASME
Paper No. BNL-99755-2013-CP.
24.
Gubynskyi
,
M. V.
,
Fedorov
,
S. S.
,
Livitan
,
M. V.
,
Kheifetz
,
R. G.
, and
Gogotsi
,
O. G.
,
2012
, “
Selection of Aerodynamic Modes for High-Temperature Electro-Thermal Fluidized Bed Furnaces
,”
Metallurhycheskaya Teplotehnyka
,
4
(
19
), pp.
55
61
.
25.
Kozlov
,
A.
,
Chudnovsky
,
Y.
,
Khinkis
,
M.
,
Yuan
,
H.
, and
Zak
,
M.
,
2014
, “
Advanced Green Petroleum Coke Calcination in Electro-Thermal Fluidized Bed
,”
Book of Abstracts of 143th Annual Meeting and Exhibition
,
MS Foundation
,
San Diego, CA
, pp.
45
53
.
26.
Reynier
,
Y.
,
Yazami
,
R.
,
Fultz
,
B.
, and
Barsukov
,
I.
,
2007
, “
Evolution of Lithiation Thermodynamics With the Graphitization of Carbons
,”
J. Power Sources
,
165
(
2
), pp.
552
558
.
27.
Fedorov
,
S. S.
,
2013
, “
The Analysis of the Efficiency of High Temperature Segmental Secondary Heat Utilizers of Fluidized Bed Type, Part I
,”
J. Metall. Min. Ind.
,
3
, pp.
125
128
.
28.
Fedorov
,
S. S.
,
2013
, “
The Analysis of the Efficiency of High Temperature Segmental Secondary Heat Utilizers of Fluidized Bed Type, Part II
,”
J. Metall. Min. Ind.
,
4
, pp.
107
109
.
29.
Dulniev
,
G. N.
, and
Novikov
,
V. V.
,
1991
,
The Processes of Transfer in Non-Uniform Environments
,
Energoatomizdat Publishing House
,
Leningrad, Russia
, p.
248
.
30.
Chernish
,
I. G.
,
Karpov
,
I. I.
,
Prikhodko
,
G. P.
, and
Shai
,
V. M.
,
1990
,
Physicochemical Properties of Graphite and Its Compounds
,
Naukova Dumka
,
Kiev, Ukraine
, p.
198
.
31.
Kulik
,
A. N.
,
Bugai
,
A. N.
,
Rogulskiy
,
Y. V.
, and
Lysenko
,
O. B.
, “
Determination of the Specific Electric Resistance of Graphite at the High Temperature Using Complex Atomic Absorption Measurements
,”
J. Nano Electron. Phys.
(in press).
32.
Kozhan
,
P.
,
Makhorin
,
K. E.
, and
Gorislavets
,
S. P.
,
1968
, “
Electrical Resistance of a Fluidized Bed of Graphite Particles
,”
J. Eng. Phys. Thermophys.
,
15
(
4
), pp.
959
961
.
33.
Kunii
,
D.
, and
Levenspiel
,
O.
,
1968
, “
Process Design Developments
,”
Ind. Eng. Chem.
,
7
(
4
), pp.
481
492
.
34.
Todesand
,
O. M.
, and
Tsitovich
,
O. B.
,
1981
,
Fluidized Bed Reactors
,
Khimiya Publishing House
,
Leningrad, USSR
, p.
296
.
35.
Malinovskiy
,
A. I.
,
Rabinovich
,
O. S.
,
Borodulya
,
V. A.
,
Grebenkov
,
A. Zh.
, and
Sidorovich
,
A. M.
,
2012
, “
Local Conductivity of Fluidized Bed Filled With Electrically Conductive Particles
,”
J. Eng. Phys.
,
85
(
2
), pp.
239
245
.
36.
2012
, “
Grades of Graphite and Specifications: Product GT-1
,”
Product Brochure
,
Zavalyevskiy Graphite, Kyiv
,
Ukraine
.
37.
Lakomskiy
,
V. I.
,
2008
,
Electrical and Electro-Contact Properties of the Electrode-Grade Thermo-Anthracite Coal
,
Akademperiodika Publishing House
,
Kiev, Ukraine
, p.
106
.
38.
State Standard Analytical Technique GOST 46684-75
,
1975
, “
Carbonaceous Materials. Harmonized Method for Measuring the Specific Electric Resistance of a Powder
,” Gos Standart USSR Publishing House, Moscow, USSR, p.
13
.
39.
2010
, “
Standard Test Method for Ash in a Graphite Sample: ASTM C561-91 (2010) e1
,” ASTM International, Book of Standards, Vol. 05.05, Subcom. D02.F0, p.
2
.
40.
Ostrovskiy
,
V. S.
,
Virgiliev
,
Yu. S.
,
Kostikov
,
B. I.
, and
Borodulya
,
V. A.
,
1986
,
Synthetic Graphite
,
Metallurgija Publishing House
,
Moscow, USSR
, p.
272
.
41.
Fialkov
,
A. S.
,
1997
,
Carbon: The Interlayer Compounds and Composite Materials Thereof
,
Aspect Press
,
Moscow
, p.
718
.
42.
Fedorov
,
S. S.
,
Gubynskyi
,
M. V.
,
Barsukov
,
I. V.
,
Livitan
,
M. V.
,
Wells
,
B. S.
,
Barsukov
,
M.
,
Zimina
,
D.
,
Gogotsi
,
O. G.
,
Zozulya
,
Yu.
, and
Rohatgi
,
U. S.
,
2014
, “
Modeling the Operation Regimes in Ultra-High Temperature Continuous Reactors
,” U.S. Department of Energy Nonproliferation and Nuclear Security Publishing, Brookhaven National Laboratory, Upton, NY, Paper No. BNL-103872-2014-CP.
You do not currently have access to this content.