The efficiency of dry powder inhalers (DPIs) for drug delivery is still very low and is therefore the objective of intensive research. Thus, numerical calculations (computational fluid dynamics (CFD)) using the Euler/Lagrange approach without coupling are being performed in order to analyze flow structure and carrier particle motion within a typical inhaler device. These computations are being performed for a steady-state situation with a flow rate of 100 l/min. Essential for the detachment of the very fine drug powder (i.e., between 1 and 5 μm) from the carrier particles are the fluid stresses experienced by such particles (i.e., relative velocity, turbulence, and fluid shear) as well as wall collisions, which are both evaluated in the present study. Since the carrier particles are rather large (i.e., normally 50–100 μm), first the importance of different relevant fluid forces, especially transverse lift forces, is investigated. Moreover, the significance of the parameters in the particle–wall collision model is highlighted and a statistical analysis of particle–wall collisions in an inhaler is conducted. The improved understanding of particle motion in the normally very complex flows of inhalers will be the basis for optimizing inhaler design.

References

References
1.
Smith
,
I. J.
, and
Parry-Billings
,
M.
,
2003
, “
The Inhalers of the Future? A Review of Dry Powder Devices on the Market Today
,”
Pulm. Pharmacol. Ther.
,
16
(
2
), pp.
79
95
.
2.
Islam
,
N.
, and
Gladki
,
E.
,
2008
, “
Dry Powder Inhalers (DPIs)—A Review of Device Reliability and Innovation
,”
Int. J. Pharm.
,
360
(
1–2
), pp.
1
11
.
3.
Newman
,
S. P.
, and
Busse
,
W. W.
,
2002
, “
Evolution of Dry Powder Inhaler Design, Formulation, and Performance
,”
Respir. Med.
,
96
(
5
), pp.
293
304
.
4.
Telko
,
M. J.
, and
Hickey
,
A. J.
,
2005
, “
Dry Powder Inhaler Formulation
,”
Respir. Care
,
50
(
9
), pp.
1209
1227
.
5.
Steckel
,
H.
, and
Müller
,
B. W.
,
1997
, “
In Vitro Evaluation of Dry Powder Inhalers I: Drug Deposition of Commonly Used Devices
,”
Int. J. Pharm.
,
154
(
1
), pp.
19
29
.
6.
de Koning
,
J. P.
,
2001
, “
Dry Powder Inhalation: Technical and Physiological Aspects, Prescribing and Use
,” Ph.D. thesis, University of Groningen, Groningen, The Netherlands.
7.
Wong
,
W.
,
Fletcher
,
D. F.
,
Traini
,
D.
,
Chan
,
H.-K.
, and
Young
,
P. M.
,
2012
, “
The Use of Computational Approaches in Inhaler Development
,”
Adv. Drug Delivery Rev.
,
64
(
4
), pp.
312
322
.
8.
Ruzycki
,
C. A.
,
Javaheri
,
E.
, and
Finlay
,
W. H.
,
2013
, “
The Use of Computational Fluid Dynamics in Inhaler Design
,”
Expert Opin. Drug Delivery
,
10
(
3
), pp.
307
323
.
9.
Donovan
,
M. J.
,
Kim
,
S. H.
,
Raman
,
V.
, and
Smyth
,
H. D.
,
2012
, “
Dry Powder Inhaler Device Influence on Carrier Particle Performance
,”
J. Pharm. Sci.
,
101
(
3
), pp.
1097
1107
.
10.
Coates
,
M. S.
,
Fletcher
,
D. F.
,
Chan
,
H.-K.
, and
Raper
,
J. A.
,
2004
, “
Effect of Design on the Performance of a Dry Powder Inhaler Using Computational Fluid Dynamics. Part 1: Grid Structure and Mouthpiece Length
,”
J. Pharm. Sci.
,
93
(
11
), pp.
2863
2876
.
11.
Coates
,
M. S.
,
Chan
,
H.-K.
,
Fletcher
,
D. F.
, and
Chiou
,
H.
,
2007
, “
Influence of Mouthpiece Geometry on the Aerosol Delivery Performance of a Dry Powder Inhaler
,”
Pharm. Res.
,
24
(
8
), pp.
1450
1456
.
12.
Milenkovic
,
J.
,
Alexopoulos
,
A. H.
, and
Kiparissides
,
C.
,
2013
, “
Flow and Particle Deposition in the Turbuhaler: A CFD Simulation
,”
Int. J. Pharm.
,
448
(
1
), pp.
205
213
.
13.
Tong
,
Z. B.
,
Zheng
,
B.
,
Yang
,
R. Y.
,
Yu
,
A. B.
, and
Chan
,
H. K.
,
2013
, “
CFD–DEM Investigation of the Dispersion Mechanisms in Commercial Dry Powder Inhalers
,”
Powder Technol.
,
240
, pp.
19
24
.
14.
Yang
,
J.
,
Wu
,
C.-Y.
, and
Adams
,
M.
,
2014
, “
Three-Dimensional DEM–CFD Analysis of Air-Flow-Induced Detachment of API Particles From Carrier Particles in Dry Powder Inhalers
,”
Acta Pharm. Sin. B
,
4
(
1
), pp.
52
59
.
15.
Cui
,
Y.
,
Schmalfuß
,
S.
,
Zellnitz
,
S.
,
Sommerfeld
,
M.
, and
Urbanetz
,
N.
,
2014
, “
Towards the Optimisation and Adaptation of Dry Powder Inhalers
,”
Int. J. Pharm.
,
470
(
1–2
), pp.
120
132
.
16.
Schiller
,
L.
, and
Naumann
,
A.
,
1933
, “
Über die grundlegende Berechnung bei der Schwerkraftaufbereitung
,”
Ver. Deut. Ing.
,
44
, pp.
318
320
.
17.
Odar
,
F.
, and
Hamilton
,
W. S.
,
1964
, “
Forces on a Sphere Accelerating in a Viscous Fluid
,”
J. Fluid Mech.
,
18
(
2
), pp.
302
314
.
18.
Michaelides
,
E. E.
, and
Roig
,
A. A.
,
2011
, “
Reinterpretation of the Odar and Hamilton Data on the Unsteady Equation of Motion of Particles
,”
AIChE J.
,
57
(
11
), pp.
2997
3002
.
19.
Saffman
,
P. G.
,
1965
, “
The Lift on a Small Sphere in a Slow Shear Flow
,”
J. Fluid Mech.
,
22
(
2
), pp.
385
400
.
20.
Rubinow
,
S. I.
, and
Keller
,
J. B.
,
1961
, “
The Transverse Force on a Spinning Sphere Moving in a Viscous Fluid
,”
J. Fluid Mech.
,
11
(
3
), pp.
447
459
.
21.
Sommerfeld
,
M.
,
van Wachem
,
B.
, and
Oliemans
,
R.
,
2008
,
Best Practice Guidelines for Computational Fluid Dynamics of Dispersed Multiphase Flows
,
ERCOFTAC (European Research Community on Flow, Turbulence and Combustion)
.
22.
Crowe
,
C. T.
,
Schwarzkopf
,
J. D.
,
Sommerfeld
,
M.
, and
Tsuji
,
Y.
,
2012
,
Multiphase Flows With Droplets and Particles
,
2nd ed.
,
CRC Press
,
Boca Raton
.
23.
Mei
,
R.
,
1992
, “
An Approximate Expression for the Shear Lift Force on a Spherical Particle at Finite Reynolds Number
,”
Int. J. Multiphase Flow
,
18
(
1
), pp.
145
147
.
24.
Oesterlé
,
B.
, and
Bui Dinh
,
T.
,
1998
, “
Experiments on the Lift of a Spinning Sphere in a Range of Intermediate Reynolds Numbers
,”
Exp. Fluids
,
25
(
1
), pp.
16
22
.
25.
Sommerfeld
,
M.
,
2010
, “
Particle Motion in Fluids
,”
VDI-Buch: VDI Heat Atlas
, Part 11,
Springer-Verlag
,
Berlin
, pp.
1181
1196
.
26.
Lain
,
S.
, and
Sommerfeld
,
M.
,
2013
, “
Characterisation of Pneumatic Conveying Systems Using the Euler/Lagrange Approach
,”
Powder Technol.
,
235
, pp.
764
782
.
27.
Zonta
,
F.
,
Marchioli
,
C.
, and
Soldati
,
A.
,
2013
, “
Particle and Droplet Deposition in Turbulent Swirled Pipe Flow
,”
Int. J. Multiphase Flow
,
56
, pp.
172
183
.
You do not currently have access to this content.