As particle-resolved simulations (PRSs) of turbulent flows laden with finite-size solid particles become feasible, methods are needed to analyze the simulated flows in order to convert the simulation data to a form useful for model development. In this paper, the focus is on turbulence statistics at the moving fluid–solid interfaces. An averaged governing equation is developed to quantify the radial transport of turbulent kinetic energy when viewed in a frame moving with a solid particle. Using an interface-resolved flow field solved by the lattice Boltzmann method (LBM), we computed each term in the transport equation for a forced, particle-laden, homogeneous isotropic turbulence. The results illustrate the distributions and relative importance of volumetric source and sink terms, as well as pressure work, viscous stress work, and turbulence transport. In a decaying particle-laden flow, the dissipation rate and kinetic energy profiles are found to be self-similar.

References

References
1.
Balachandar
,
S.
, and
Eaton
,
J. K.
,
2010
, “
Turbulent Dispersed Multiphase Flow
,”
Annu. Rev. Fluid Mech.
42
(
1
), pp.
111
133
.
2.
Corsini
,
A.
,
Rispoli
,
F.
,
Sheard
,
A. G.
, and
Venturini
,
P.
,
2013
, “
Numerical Simulation of Coal Fly-Ash Erosion in an Induced Draft Fan
,”
ASME J. Fluids Eng.
,
135
(
1
), p.
081303
.
3.
Patro
,
P.
, and
Dash
,
S. K.
,
2014
, “
Computations of Particle-Laden Turbulent Jet Flows Based on Eulerian Model
,”
ASME J. Fluids Eng.
,
136
(
1
), p.
011301
.
4.
Maxey
,
M. R.
, and
Riley
,
J. J.
,
1983
, “
Equation of Motion for a Small Rigid Sphere in a Nonuniform Flow
,”
Phys. Fluids
,
26
(
4
), pp.
883
889
.
5.
Wang
,
L.-P.
,
Rosa
,
B.
,
Gao
,
H.
,
He
,
G. W.
, and
Jin
,
G. D.
,
2009
, “
Turbulent Collision of Inertial Particles: Point-Particle Based, Hybrid Simulations and Beyond
,”
Int. J. Multiphase Flow
,
35
(
9
), pp.
854
867
.
6.
Squires
,
K. D.
, and
Eaton
,
J. K.
,
1991
, “
Preferential Concentration of Particles by Turbulence
,”
Phys. Fluids A
,
3
(
5
), pp.
1169
1179
.
7.
Wang
,
L.-P.
, and
Maxey
,
M. R.
,
1993
, “
Settling Velocity and Concentration Distribution of Heavy Particles in Homogeneous Isotropic Turbulence
,”
J. Fluid Mech.
,
256
, pp.
27
68
.
8.
Squires
,
K. D.
, and
Eaton
,
J. D.
,
1990
, “
Particle Response and Turbulence Modification in Isotropic Turbulence
,”
Phys. Fluids A
,
2
(
7
), pp.
1191
1203
.
9.
Elghobashi
,
S.
, and
Truesdell
,
G.
,
1993
, “
On the 2-Way Interaction Between Homogeneous Turbulence and Dispersed Solid Particles. I: Turbulence Modification
,”
Phys. Fluids A
,
5
(
7
), pp.
1790
1801
.
10.
Sundaram
,
S.
, and
Collins
,
L. R.
,
1997
, “
Collision Statistics in an Isotropic Particle-Laden Turbulent Suspension. Part 1. Direct Numerical Simulations
,”
J. Fluid Mech.
,
335
, pp.
75
109
.
11.
Zhou
,
Y.
,
Wexler
,
A. S.
, and
Wang
,
L.-P.
,
2001
, “
Modeling Turbulent Collision of Bidisperse Inertial Particles
,”
J. Fluid Mech.
,
433
, pp.
77
104
.
12.
Ayala
,
O.
,
Grabowski
,
W. W.
, and
Wang
,
L.-P.
,
2007
, “
A Hybrid Approach for Simulating Turbulent Collisions of Hydrodynamically-Interacting Particles
,”
J. Comput. Phys.
,
225
(
1
), pp.
51
73
.
13.
Jin
,
G. D.
,
He
,
G. W.
, and
Wang
,
L.-P.
,
2010
, “
Large Eddy Simulation of Collisional Statistics of Inertial Particles in Isotropic Turbulence
,”
Phys. Fluids.
,
22
(
5
), p.
055106
.
14.
Burton
,
T. M.
, and
Eaton
,
J. K.
,
2005
, “
Fully Resolved Simulations of Particle-Turbulence Interaction
,”
J. Fluid Mech.
,
545
, pp.
67
111
.
15.
Gore
,
R. A.
, and
Crowe
,
C. T.
,
1989
, “
Effect of Particle Size on Modulating Turbulent Intensity
,”
Int. J. Multiphase Flow
,
15
(
2
), pp.
279
285
.
16.
Crowe
,
C. T.
,
2000
, “
On Models for Turbulence Modulation in Fluid-Particle Flows
,”
Int. J. Multiphase Flow
,
26
(
5
), pp.
719
727
.
17.
Uhlmann
,
M.
,
2005
, “
An Immersed Boundary Method With Direct Forcing for the Simulation of Particulate Flows
,”
J. Comput. Phys.
209
(
2
), pp.
448
476
.
18.
Uhlmann
,
M.
,
2008
, “
Interface-Resolved Direct Numerical Simulation of Vertical Particulate Channel Flow in the Turbulent Regime
,”
Phys. Fluids
,
20
(
5
), p.
053305
.
19.
Shao
,
X.
,
Wu
,
T.
, and
Yu
,
Z.
,
2012
, “
Fully Resolved Numerical Simulation of Particle-Laden Turbulent Flow in a Horizontal Channel at a Low Reynolds Number
,”
J. Fluid Mech.
,
693
, pp.
319
344
.
20.
Yang
,
J. M.
, and
Stern
,
F.
,
2014
, “
A Sharp Interface Direct Forcing Immersed Boundary Approach for Fully Resolved Simulations of Particulate Flows
,”
ASME J. Fluids Eng.
,
136
(
4
), p.
040904
.
21.
Zhang
,
Z.
, and
Prosperetti
,
A.
,
2005
, “
A Second-Order Method for Three-Dimensional Particle Simulation
,”
J. Comput. Phys.
,
210
(
1
), pp.
292
324
.
22.
Yeo
,
K.
,
Dong
,
S.
,
Climent
,
E.
, and
Maxey
,
M. R.
,
2010
, “
Modulation of Homogeneous Turbulence Seeded With Finite Size Bubbles or Particles
,”
Int. J. Multiphase Flow
,
36
(
3
), pp.
221
233
.
23.
Homann
,
H.
, and
Bec
,
J.
,
2010
, “
Finite-Size Effects in the Dynamics of Neutrally Buoyant Particles in Turbulent Flow
,”
J. Fluid Mech.
,
651
, pp.
81
91
.
24.
Gao
,
H.
,
Li
,
H.
, and
Wang
,
L.-P.
,
2013
, “
Lattice Boltzmann Simulation of Turbulent Flow Laden With Finite-Size Particles
,”
Comput. Math. Appl.
,
65
(
2
), pp.
194
210
.
25.
Wang
,
L.-P.
,
Ayala
,
O.
,
Gao
,
H.
,
Andersen
,
C.
, and
Mathews
,
K.
,
2014
, “
Study of Forced Turbulence and Its Modulation by Finite-Size Solid Particles Using the Lattice Boltzmann Approach
,”
Comput. Math. Appl.
,
67
(
2
), pp.
363
380
.
26.
Gillissen
,
J.
,
2013
, “
Turbulent Drag Reduction Using Fluid Spheres
,”
J. Fluid Mech.
,
716
, pp.
83
95
.
27.
Ten Cate
,
A.
,
Derksen
,
J. J.
,
Portela
,
L. M.
, and
van den Akker
,
H. E. A.
,
2004
, “
Fully Resolved Simulations of Colliding Monodisperse Spheres in Forced Isotropic Turbulence
,”
J. Fluid Mech.
,
519
, pp.
233
271
.
28.
Wang
,
L.-P.
,
Peng
,
C.
,
Guo
,
Z.
, and
Yu
,
Z.
,
2015
, “
Flow Modulation by Finite-Size Neutrally Buoyant Particles in a Turbulent Channel Flow
,”
ASME J. Fluids Eng.
(in press).
29.
Peng
,
C.
,
Teng
,
Y.
,
Hwang
,
B.
,
Guo
,
Z.
, and
Wang
,
L.-P.
,
2015
, “
Implementation Issues and Benchmarking of Lattice Boltzmann Method for Moving Particle Simulations in a Viscous Flow
,”
Comput. Math. Appl.
(in press).
30.
Lucci
,
F.
,
Ferrante
,
A.
, and
Elghobashi
,
S.
,
2010
, “
Modulation of Isotropic Turbulence by Particles of Taylor Length-Scale Size
,”
J. Fluid Mech.
,
650
, pp.
5
55
.
31.
Chen
,
S.
, and
Doolen
,
G.
,
1998
, “
Lattice Boltzmann Method for Fluid Flows
,”
Annu. Rev. Fluid Mech.
,
30
(
1
), pp.
329
364
.
32.
Qian
,
Y. H.
,
d'Humières
,
D.
, and
Lallemand
,
P.
,
1992
, “
Lattice BGK Models for Navier–Stokes Equation
,”
Europhys. Lett.
,
17
(
6BIS
), pp.
479
484
.
33.
d'Humières
,
D.
,
Ginzburg
,
I.
,
Krafczyk
,
M.
,
Lallemand
,
P.
, and
Luo
,
L.-S.
,
2002
, “
Multiple-Relaxation-Time Lattice Boltzmann Models in Three-Dimensions
,”
Phil. Trans. R. Soc. London A
,
360
(
1792
), pp.
437
451
.
34.
Wang
,
L.-P.
,
Peng
,
C.
,
Guo
,
Z.
, and
Yu
,
Z.
,
2015
, “
Lattice Boltzmann Simulation of Particle-Laden Turbulent Channel Flow
,”
Comput. Fluids
(in press).
35.
Guo
,
Z.
,
Zheng
,
C.
, and
Shi
,
B.
,
2002
, “
Discrete Lattice Effects on the Forcing Term in the Lattice Boltzmann Method
,”
Phys. Rev. E.
,
65
(
4
), p.
046308
.
36.
Lu
,
J.
,
Han
,
H.
,
Shi
,
B.
, and
Guo
,
Z.
,
2012
, “
Immersed Boundary Lattice Boltzmann Model Based on Multiple Relaxation Times
,”
Phys. Rev. E
,
85
(
1
), p.
016711
.
37.
Lallemand
,
P.
, and
Luo
,
L.-S.
,
2003
, “
Lattice Boltzmann Method for Moving Boundaries
,”
J. Comp. Phys.
,
184
(
2
), pp.
406
421
.
38.
Chen
,
L.
,
Yu
,
Y.
,
Lu
,
J.
, and
Hou
,
G.
,
2014
, “
A Comparative Study of Lattice Boltzmann Methods Using Bounce-Back Schemes and Immersed Boundary Ones for Flow Acoustic Problems
,”
Int. J. Numer. Meth. Fluids
,
74
(
6
), pp.
439
467
.
39.
Wen
,
B.
,
Zhang
,
C.
,
Tu
,
Y.
,
Wang
,
C.
, and
Fang
,
H.
,
2014
, “
Galilean Invariant Fluid-Solid Interfacial Dynamics in Lattice Boltzmann Simulations
,”
J. Comput. Phys.
,
266
, pp.
161
170
.
40.
Nguyen
,
N. Q.
, and
Ladd
,
A. J. C.
,
2002
, “
Lubrication Corrections for Lattice-Boltzmann Simulations of Particle Suspensions
,”
Phys. Rev. E
,
66
(
4
), p.
046708
.
41.
Dance
,
S. L.
, and
Maxey
,
M. R.
,
2003
, “
Incorporation of Lubrication Effects Into the Force-Coupling Method for Particulate Two-Phase Flow
,”
J. Comput. Phys.
,
189
(
1
), pp.
212
238
.
42.
Peng
,
Y.
,
Liao
,
W.
,
Luo
,
L.-S.
, and
Wang
,
L.-P.
,
2010
, “
Comparison of the Lattice Boltzmann and Pseudo-Spectral Methods for Decaying Turbulence: Low-Order Statistics
,”
Comput. Fluids
,
39
(
4
), pp.
568
591
.
43.
Crowe
,
C. T.
,
Schwarzkopf
,
J. D.
,
Sommerfeld
,
M.
, and
Tsuji
,
Y.
,
2012
,
Multiphase Flows With Droplets and Particles
,
2nd ed.
,
CRC Press
,
Boca Raton
.
44.
Fox
,
R. O.
,
2012
, “
Large-Eddy-Simulation Tools for Multiphase Flows
,”
Annu. Rev. Fluid Mech.
,
44
(
1
), pp.
47
76
.
45.
Mei
,
R.
,
Luo
,
L.-S.
,
Lallemand
,
P.
, and
d'Humières
,
D.
,
2006
, “
Consistent Initial Conditions for Lattice Boltzmann Simulations
,”
Comput. Fluids
,
35
(
8–9
), pp.
855
862
.
46.
Yu
,
H.
,
Luo
,
L.-S.
, and
Girimaji
,
S. S.
,
2006
, “
LES of Turbulent Square Jet Flow Using an MRT Lattice Boltzmann Model
,”
Comput. Fluids
,
35
(
8–9
), pp.
957
965
.
You do not currently have access to this content.