A fully mesoscopic, multiple-relaxation-time (MRT) lattice Boltzmann method (LBM) is developed to perform particle-resolved direct numerical simulation (DNS) of wall-bounded turbulent particle-laden flows. The fluid–solid particle interfaces are treated as sharp interfaces with no-slip and no-penetration conditions. The force and torque acting on a solid particle are computed by a local Galilean-invariant momentum exchange method. The first objective of the paper is to demonstrate that the approach yields accurate results for both single-phase and particle-laden turbulent channel flows, by comparing the LBM results to the published benchmark results and a full-macroscopic finite-difference direct-forcing (FDDF) approach. The second objective is to study turbulence modulations by finite-size solid particles in a turbulent channel flow and to demonstrate the effects of particle size. Neutrally buoyant particles with diameters 10% and 5% the channel width and a volume fraction of about 7% are considered. We found that the mean flow speed was reduced due to the presence of the solid particles, but the local phase-averaged flow dissipation was increased. The effects of finite particle size are reflected in the level and location of flow modulation, as well as in the volume fraction distribution and particle slip velocity near the wall.

References

1.
Corsini
,
A.
,
Rispoli
,
F.
,
Sheard
,
A. G.
, and
Venturini
,
P.
,
2013
, “
Numerical Simulation of Coal Fly-Ash Erosion in an Induced Draft Fan
,”
ASME J. Fluids Eng.
,
135
(
1
), p.
081303
.
2.
Patro
,
P.
, and
Dash
,
S. K.
,
2014
, “
Computations of Particle-Laden Turbulent Jet Flows Based on Eulerian Model
,”
ASME J. Fluids Eng.
,
136
(
1
), p.
011301
.
3.
Balachandar
,
S.
, and
Eaton
,
J. K.
,
2010
, “
Turbulent Dispersed Multiphase Flow
,”
Annu. Rev. Fluid Mech.
,
42
(
1
), pp.
111
133
.
4.
Maxey
,
M. R.
, and
Riley
,
J. J.
,
1983
, “
Equation of Motion for a Small Rigid Sphere in a Nonuniform Flow
,”
Phys. Fluids
,
26
(
4
), pp.
883
889
.
5.
Wang
,
L.-P.
,
Rosa
,
B.
,
Gao
,
H.
,
He
,
G. W.
, and
Jin
,
G. D.
,
2009
, “
Turbulent Collision of Inertial Particles: Point-Particle Based, Hybrid Simulations and Beyond
,”
Int. J. Multiphase Flow
,
35
(
9
), pp.
854
867
.
6.
Squires
,
K. D.
, and
Eaton
,
J. K.
,
1991
, “
Preferential Concentration of Particles by Turbulence
,”
Phys. Fluids A
,
3
(
5
), pp.
1169
1179
.
7.
Wang
,
L.-P.
, and
Maxey
,
M. R.
,
1993
, “
Settling Velocity and Concentration Distribution of Heavy Particles in Homogeneous Isotropic Turbulence
,”
J. Fluid Mech.
,
256
, pp.
27
68
.
8.
Squires
,
K. D.
, and
Eaton
,
J. D.
,
1990
, “
Particle Response and Turbulence Modification in Isotropic Turbulence
,”
Phys. Fluids A
,
2
(
7
), pp.
1191
1203
.
9.
Elghobashi
,
S.
, and
Truesdell
,
G.
,
1993
, “
On the 2-Way Interaction Between Homogeneous Turbulence and Dispersed Solid Particles. I: Turbulence Modification
,”
Phys. Fluids A
,
5
(
7
), pp.
1790
1801
.
10.
Sundaram
,
S.
, and
Collins
,
L. R.
,
1997
, “
Collision Statistics in an Isotropic Particle-Laden Turbulent Suspension. Part 1—Direct Numerical Simulations
,”
J. Fluid Mech.
,
335
, pp.
75
109
.
11.
Zhou
,
Y.
,
Wexler
,
A. S.
, and
Wang
,
L.-P.
,
2001
, “
Modeling Turbulent Collision of Bidisperse Inertial Particles
,”
J. Fluid Mech.
,
433
, pp.
77
104
.
12.
Ayala
,
O.
,
Grabowski
,
W. W.
, and
Wang
,
L.-P.
,
2007
, “
A Hybrid Approach for Simulating Turbulent Collisions of Hydrodynamically-Interacting Particles
,”
J. Comput. Phys.
,
225
(
1
), pp.
51
73
.
13.
Jin
,
G. D.
,
He
,
G. W.
, and
Wang
,
L.-P.
,
2010
, “
Large Eddy Simulation of Collisional Statistics of Inertial Particles in Isotropic Turbulence
,”
Phys. Fluids.
,
22
(
5
), p.
055106
.
14.
Burton
,
T. M.
, and
Eaton
,
J. K.
,
2005
, “
Fully Resolved Simulations of Particle–Turbulence Interaction
,”
J. Fluid Mech.
,
545
, pp.
67
111
.
15.
Uhlmann
,
M.
,
2005
, “
An Immersed Boundary Method With Direct Forcing for the Simulation of Particulate Flows
,”
J. Comput. Phys.
209
(
2
), pp.
448
476
.
16.
Uhlmann
,
M.
,
2008
, “
Interface-Resolved Direct Numerical Simulation of Vertical Particulate Channel Flow in the Turbulent Regime
,”
Phys. Fluids
,
20
(
5
), p.
053305
.
17.
Shao
,
X.
,
Wu
,
T.
, and
Yu
,
Z.
,
2012
, “
Fully Resolved Numerical Simulation of Particle-Laden Turbulent Flow in a Horizontal Channel at a Low Reynolds Number
,”
J. Fluid Mech.
,
693
, pp.
319
344
.
18.
Yang
,
J. M.
, and
Stern
,
F.
,
2014
, “
A Sharp Interface Direct Forcing Immersed Boundary Approach for Fully Resolved Simulations of Particulate Flows
,”
ASME J. Fluids Eng.
,
136
(
4
), p.
040904
.
19.
Zhang
,
Z.
, and
Prosperetti
,
A.
,
2005
, “
A Second-Order Method for Three-Dimensional Particle Simulation
,”
J. Comput. Phys.
,
210
(
1
), pp.
292
324
.
20.
Yeo
,
K.
,
Dong
,
S.
,
Climent
,
E.
, and
Maxey
,
M. R.
,
2010
, “
Modulation of Homogeneous Turbulence Seeded With Finite Size Bubbles or Particles
,”
Int. J. Multiphase Flow
,
36
(
3
), pp.
221
233
.
21.
Homann
,
H.
, and
Bec
,
J.
,
2010
, “
Finite-Size Effects in the Dynamics of Neutrally Buoyant Particles in Turbulent Flow
,”
J. Fluid Mech.
,
651
, pp.
81
91
.
22.
Gao
,
H.
,
Li
,
H.
, and
Wang
,
L.-P.
,
2013
, “
Lattice Boltzmann Simulation of Turbulent Flow Laden With Finite-Size Particles
,”
Comput. Math. Appl.
,
65
(
2
), pp.
194
210
.
23.
Wang
,
L.-P.
,
Ayala
,
O.
,
Gao
,
H.
,
Andersen
,
C.
, and
Mathews
,
K.
,
2014
, “
Study of Forced Turbulence and Its Modulation by Finite-Size Solid Particles Using the Lattice Boltzmann Approach
,”
Comput. Math. Appl.
,
67
(
2
), pp.
363
380
.
24.
Gillissen
,
J.
,
2013
, “
Turbulent Drag Reduction Using Fluid Spheres
,”
J. Fluid Mech.
,
716
, pp.
83
95
.
25.
Ten Cate
,
A.
,
Derksen
,
J. J.
,
Portela
,
L. M.
, and
van den Akker
,
H. E. A.
,
2004
, “
Fully Resolved Simulations of Colliding Monodisperse Spheres in Forced Isotropic Turbulence
,”
J. Fluid Mech.
,
519
, pp.
233
271
.
26.
Ernst
,
M.
,
Dietzel
,
M.
, and
Sommerfeld
,
M.
,
2013
, “
A Lattice Boltzmann Method for Simulating Transport and Agglomeration of Resolved Particles
,”
Acta Mech.
,
224
(
10
), pp.
2425
2449
.
27.
Pan
,
Y.
, and
Banerjee
,
S.
,
1997
, “
Numerical Investigation of the Effects of Large Particles on Wall Turbulence
,”
Phys. Fluids
,
9
(
12
), pp.
3786
3807
.
28.
Vowinckel
,
B.
,
Kempe
,
T.
, and
Froehlich
,
J.
,
2014
, “
Fluid–Particle Interaction in Turbulent Open Channel Flow With Fully-Resolved Mobile Beds
,”
Adv. Water Resour.
,
72
, pp.
32
44
.
29.
Rashidi
,
M.
,
Hetstoni
,
G.
, and
Banerjee
,
S.
,
1990
, “
Particle Turbulence Interaction in a Boundary Layer
,”
Int. J. Multiphase Flow
,
16
(
6
), pp.
935
949
.
30.
Kaftori
,
D.
,
Hetsroni
,
G.
, and
Banerjee
,
S.
,
1998
, “
The Effect of Particles on Wall Turbulence
,”
Int. J. Multiphase Flow
,
24
(
3
), pp.
359
386
.
31.
Rogers
,
C. B.
, and
Eaton
,
J. K.
,
1991
, “
The Effect of Small Particles on Fluid Turbulence in a Flat-Plate, Turbulent Boundary Layer in Air
,”
Phys. Fluids
,
3
(
5
), pp.
928
937
.
32.
Zisselmar
,
R.
, and
Molerus
,
O.
,
1979
, “
Investigation of Solid–Liquid Pipe Flow With Regard to Turbulence Modification
,”
Chem. Eng. J.
,
18
(
3
), pp.
233
239
.
33.
Belt
,
R. J.
,
Daalmans
,
A. C. L. M.
, and
Portela
,
M.
,
2012
, “
Experimental Study of Particle-Driven Secondary Flow in Turbulent Pipe Flows
,”
J. Fluid Mech.
,
709
, pp.
1
36
.
34.
Gore
,
R. A.
, and
Crowe
,
C. T.
,
1989
, “
Effect of Particle Size on Modulating Turbulent Intensity
,”
Int. J. Multiphase Flow
,
15
(
2
), pp.
279
285
.
35.
Hetsroni
,
G
.,
1989
, “
Particle Turbulence Interaction
,”
Int. J. Multiphase Flow
,
15
(
5
), pp.
735
746
.
36.
Matas
,
J. P.
,
Morris
,
J. F.
, and
Guazzelli
,
E.
,
2003
, “
Transition to Turbulence in Particulate Pipe Flow
,”
Phys. Rev. Lett.
,
90
(
1
), p.
014501
.
37.
Yu
,
Z.
, and
Shao
,
X.
,
2007
, “
A Direct-Forcing Fictitious Domain Method for Particulate Flows
,”
J. Comput. Phys.
,
227
(
1
), pp.
292
314
.
38.
Chen
,
S.
, and
Doolen
,
G.
,
1998
, “
Lattice Boltzmann Method for Fluid Flows
,”
Annu. Rev. Fluid Mech.
,
30
(
1
), pp.
329
364
.
39.
Qian
,
Y. H.
,
d’Humières
,
D.
, and
Lallemand
,
P.
,
1992
, “
Lattice BGK Models for Navier–Stokes Equation
,”
Europhys. Lett.
,
17
(
6BIS
), pp.
479
484
.
40.
Peng
,
Y.
,
Liao
,
W.
,
Luo
,
L.-S.
, and
Wang
,
L.-P.
,
2010
, “
Comparison of the Lattice Boltzmann and Pseudo-Spectral Methods for Decaying Turbulence: Low-Order Statistics
,”
Comput. Fluids
,
39
(
4
), pp.
568
591
.
41.
Lammers
,
P.
,
Beronov
,
K. N.
,
Volkert
,
R.
,
Brenner
,
G.
, and
Durst
,
F.
,
2006
, “
Lattice BGK Direct Numerical Simulation of Fully Developed Turbulence in Incompressible Plane Channel Flow
,”
Comput. Fluids
,
35
(
10
), pp.
1137
1153
.
42.
Peng
,
C.
,
Teng
,
Y.
,
Hwang
,
B.
,
Guo
,
Z.
, and
Wang
,
L.-P.
,
2015
, “
Implementation Issues and Benchmarking of Lattice Boltzmann Method for Moving Particle Simulations in a Viscous Flow
,”
Comput. Math. Appl.
(in press).
43.
d’Humières
,
D.
,
Ginzburg
,
I.
,
Krafczyk
,
M.
,
Lallemand
,
P.
, and
Luo
,
L.-S.
,
2002
, “
Multiple-Relaxation-Time Lattice Boltzmann Models in Three-Dimensions
,”
Philos. Trans. R. Soc. London A
,
360
(
1792
), pp.
437
451
.
44.
Guo
,
Z.
,
Zheng
,
C.
, and
Shi
,
B.
,
2002
, “
Discrete Lattice Effects on the Forcing Term in the Lattice Boltzmann Method
,”
Phys. Rev. E.
,
65
(
4
), p.
046308
.
45.
Lu
,
J.
,
Han
,
H.
,
Shi
,
B.
, and
Guo
,
Z.
,
2012
, “
Immersed Boundary Lattice Boltzmann Model Based on Multiple Relaxation Times
,”
Phys. Rev. E.
,
85
(
1
), p.
016711
.
46.
He
,
X.
, and
Luo
,
L.-S.
,
1997
, “
Theory of the Lattice Boltzmann Method: From the Boltzmann Equation to the Lattice Boltzmann Equation
,”
Phys. Rev. E.
,
56
(
6
), pp.
6811
6817
.
47.
Shan
,
X. W.
,
Yuan
,
X. F.
, and
Chen
,
H. D.
,
2006
, “
Kinetic Theory Representation of Hydrodynamics: A Way Beyond the Navier–Stokes Equation
,”
J. Fluid Mech.
,
550
, pp.
413
441
.
48.
Lallemand
,
P.
, and
Luo
,
L.-S.
,
2003
, “
Lattice Boltzmann Method for Moving Boundaries
,”
J. Comput. Phys.
,
184
(
2
), pp.
406
421
.
49.
Caiazzo
,
A.
,
2008
, “
Analysis of Lattice Boltzmann Nodes Initialisation in Moving Boundary Problems
,”
Prog. Comput. Fluid Dyn.
,
8
(
1–4
), pp.
3
10
.
50.
Wen
,
B.
,
Zhang
,
C.
,
Tu
,
Y.
,
Wang
,
C.
, and
Fang
,
H.
,
2014
, “
Galilean Invariant Fluid–Solid Interfacial Dynamics in Lattice Boltzmann Simulations
,”
J. Comput. Phys.
,
266
, pp.
161
170
.
51.
Nguyen
,
N. Q.
, and
Ladd
,
A. J. C.
,
2002
, “
Lubrication Corrections for Lattice-Boltzmann Simulations of Particle Suspensions
,”
Phys. Rev. E
,
66
(
4
), p.
046708
.
52.
Dance
,
S. L.
, and
Maxey
,
M. R.
,
2003
, “
Incorporation of Lubrication Effects into the Force-Coupling Method for Particulate Two-Phase Flow
,”
J. Comput. Phys.
,
189
(
1
), pp.
212
238
.
53.
Glowinski
,
R.
,
Pan
,
T.-W.
,
Hesla
,
T. I.
, and
Joseph
,
D. D.
,
1999
, “
A Distributed Lagrange Multiplier/Fictitious Domain Method for Particulate Flows
,”
Int. J. Multiphase Flow
,
25
(
5
), pp.
755
794
.
54.
Wang
,
L.-P.
,
Peng
,
C.
,
Guo
,
Z.
, and
Yu
,
Z.
,
2015
, “
Lattice Boltzmann Simulation of Particle-Laden Turbulent Channel Flow
,”
Comput. Fluids
(in press).
55.
Wu
,
T.
,
Shao
,
X.
, and
Yu
,
Z.
,
2011
, “
Fully Resolved Numerical Simulation of Turbulent Pipe Flows Laden With Large Neutrally-Buoyant Particles
,”
J. Hydrodyn. Ser. B
,
23
(
1
), pp.
21
25
.
56.
Yu
,
Z.
,
Wu
,
T.
,
Shao
,
X.
, and
Lin
,
J.
,
2013
, “
Numerical Studies of the Effects of Large Neutrally Buoyant Particles on the Flow Instability and Transition to Turbulence in Pipe Flow
,”
Phys. Fluids
,
25
(
4
), p.
043305
.
57.
Kim
,
J.
,
Moin
,
P.
, and
Moser
,
R.
,
1987
, “
Turbulence Statistics in Fully-Developed Channel Flow at Low Reynolds-Number
,”
J. Fluid Mech.
,
177
, pp.
133
166
.
58.
Moser
,
R.
,
Kim
,
J.
, and
Mansour
,
N. N.
,
1999
, “
Direct Numerical Simulation of Turbulent Channel Flow up to Re-Tau = 590
,”
Phys. Fluids.
,
11
(
4
), pp.
943
945
.
59.
Picano
,
F.
,
Breugem
,
W. P.
, and
Brandt
,
L.
,
2015
, “
Turbulent Channel Flow of Dense Suspensions of Neutrally Buoyant Spheres
,”
J. Fluid Mech.
,
764
, pp.
463
487
.
60.
Li
,
Y. M.
,
McLaughlin
,
J. B.
,
Kontomaris
,
K.
, and
Portela
,
L.
,
2001
, “
Numerical Simulation of Particle-Laden Turbulent Channel Flow
,”
Phys. Fluids
,
13
(
10
), pp.
2957
2967
.
61.
Segré
,
G.
, and
Silberberg
,
A.
,
1961
, “
Radial Particle Displacements in Poiseuille Flow of Suspensions
,”
Nature
,
189
(
476
), pp.
209
210
.
62.
Segré
,
G.
, and
Silberberg
,
A.
,
1962
, “
Behavior of Macroscopic Rigid Spheres in Poiseuille Flow
,”
J. Fluid Mech.
,
14
(
1
), pp.
136
157
.
63.
Shao
,
X.
,
Yu
,
Z.
, and
Sun
,
B.
,
2008
, “
Inertial Migration of Spherical Particles in Circular Poiseuille Flow at Moderately High Reynolds Numbers
,”
Phys. Fluids
,
20
(
10
), p.
103307
.
You do not currently have access to this content.