The effect of the lift augmentation of multi-element airfoils with increased flap deflection and dielectric barrier discharge (DBD) plasma flow control on the flap at several angles of attack (AOAs) is investigated numerically and experimentally. A phenomenological body force model is employed to simulate the DBD actuators at Re = 1.03 × 106. The simulation results show that the atmospheric plasma generated by the DBD actuators completely suppresses the flow separation over the flap at several AOAs, and consequently, the lift augmentation of a multi-element airfoil can be achieved over the entire prestall AOA range. A corresponding flow control experiment on a multi-element airfoil performed in a low-speed wind tunnel at a freestream velocity of 30 m/s is presented; in this experiment, particle image velocimetry (PIV) was employed for flow visualization over the upper surface of the flap. The PIV results demonstrate that the flow separation on the flap is suppressed completely by the same DBD actuators used in the simulation.

References

References
1.
Lin
,
J. C.
,
Robinson
,
S. K.
,
McGhee
,
R. J.
, and
Valarezo
,
W. O.
,
1994
, “
Separation Control on High-Lift Airfoils Via Micro-Vortex Generators
,”
J. Aircr.
,
31
(
6
), pp.
1317
1323
.
2.
Casper
,
M.
,
Scholz
,
P.
,
Radespiel
,
R.
,
Wild
,
J.
, and
Ciobaca
,
V.
,
2011
, “
Separation Control on a High-Lift Airfoil Using Vortex Generator Jets at High Reynolds Numbers
,”
AIAA
Paper No. 2011-3442.
3.
Chu
,
H. B.
,
Zhang
,
B. Q.
,
Chen
,
Y. C.
,
Li
,
Y. L.
, and
Mao
,
J.
,
2012
, “
Investigation of Micro Vortex Generators on Controlling Flow Separation Over SCCH High-Lift Configuration
,”
Sci. China Technol. Sci.
,
55
(
7
), pp.
1943
1953
.
4.
Petz
,
R.
, and
Nitsche
,
W.
,
2007
, “
Active Separation Control on the Flap of a Two-Dimensional Generic High-Lift Configuration
,”
J. Aircr.
,
44
(
3
), pp.
865
875
.
5.
Becker
,
R.
,
King
,
R.
,
Petz
,
R.
, and
Nitsch
,
W.
,
2007
, “
Adaptive Closed-Loop Separation Control on a High-Lift Configuration Using Extremum Seeking
,”
AIAA J.
,
45
(
6
), pp.
1382
1394
.
6.
Shmilovich
,
A.
, and
Yadlin
,
Y.
,
2009
, “
Active Flow Control for Practical High-Lift Systems
,”
J. Aircr.
,
46
(
4
), pp.
1354
1364
.
7.
Ciobaca
,
V.
, and
Wild
,
J.
,
2013
, “
An Overview of Recent DLR Contributions on Active Flow-Separation Control Studies for High-Lift Configurations
,”
J. AerospaceLab
,
2013
, p.
AL06-12
.
8.
Ciobaca
,
V.
,
Kühn
,
T.
,
Rudnik
,
R.
,
Bauer
,
M.
,
Gölling
,
B.
, and
Breitenstein
,
W.
,
2013
, “
Active Flow-Separation Control on a High-Lift Wing-Body Configuration
,”
J. Aircr.
,
50
(
1
), pp.
56
72
.
9.
Moreau
,
E.
,
2007
, “
Air Flow Control by Non-Thermal Plasma Actuators
,”
J. Phys. D: Appl. Phys.
,
40
(
3
), pp.
605
636
.
10.
Corke
,
T. C.
,
Post
,
M. L.
, and
Orlov
,
D. M.
,
2007
, “
SDBD Plasma Enhanced Aerodynamics: Concepts, Optimization and Applications
,”
Prog. Aerosp. Sci.
,
43
(
7–8
), pp.
193
217
.
11.
Roth
,
J. R.
,
Sherman
,
D. M.
, and
Wilkinson
,
S. P.
,
2000
, “
Electrohydrodynamic Flow Control With a Glow-Discharge Surface Plasma
,”
AIAA J.
,
38
(
7
), pp.
1166
1172
.
12.
Thomas
,
F. O.
,
Corke
,
T. C.
,
Iqbal
,
M.
,
Kozlov
,
A.
, and
Schatzman
,
D.
,
2009
, “
Optimization of Dielectric Barrier Discharge Plasma Actuators for Active Aerodynamic Flow Control
,”
AIAA J.
,
47
(
9
), pp.
2169
2178
.
13.
Hao
,
J. N.
,
Cai
,
J. S.
, and
Li
,
Y. Z.
,
2012
, “
Experimental Study of Flow Acceleration Using Plasma Actuator of Multi-Bipolar Electrodes
,”
Sci. Sin. Phys., Mech. Astron.
,
42
(
5
), pp.
538
846
.
14.
Post
,
M. L.
, and
Corke
,
T. C.
,
2004
, “
Separation Control on High Angle of Attack Airfoil Using Plasma Actuators
,”
AIAA J.
,
42
(
11
), pp.
2177
2184
.
15.
Post
,
M. L.
, and
Corke
,
T. C.
,
2006
, “
Separation Control Using Plasma Actuators: Dynamic Stall Vortex Control on Oscillating Airfoil
,”
AIAA J.
,
44
(
12
), pp.
3125
3139
.
16.
Greenblatt
,
D.
,
Göksel
,
B.
,
Rechenberg
,
I.
,
Schüle
,
C. Y.
,
Romann
,
D.
, and
Paschereit
,
C. O.
,
2008
, “
Dielectric Barrier Discharge Flow Control at Very Low Flight Reynolds Numbers
,”
AIAA J.
,
46
(
6
), pp.
1528
1541
.
17.
Rizzetta
,
D. P.
, and
Visbal
,
M. R.
,
2012
, “
Plasma Control for a Maneuvering Low-Aspect-Ratio Wing at Low Reynolds Number
,”
ASME J. Fluids Eng.
,
134
(
12
), p.
121104
.
18.
Huang
,
J. H.
,
Corke
,
T. C.
, and
Thomas
,
F. O.
,
2006
, “
Plasma Actuators for Separation Control of Low-Pressure Turbine Blades
,”
AIAA J.
,
44
(
1
), pp.
51
62
.
19.
Rizzetta
,
D. P.
, and
Visbal
,
M. R.
,
2008
, “
Plasma-Based Flow-Control Strategies for Transitional Highly Loaded Low-Pressure Turbines
,”
ASME J. Fluids Eng.
,
130
(
4
), p.
041104
.
20.
D'Adamo
,
J.
,
Sosa
,
R.
, and
Artana
,
G.
,
2014
, “
Active Control of a Backward Facing Step Flow With Plasma Actuators
,”
ASME J. Fluids Eng.
,
136
(
12
), p.
121105
.
21.
Little
,
J.
,
Nishihara
,
M.
,
Adamovich
,
I.
, and
Samimy
,
M.
,
2010
, “
High-Lift Airfoil Trailing Edge Separation Control Using a Single Dielectric Barrier Discharge Plasma Actuator
,”
Exp. Fluids
,
48
(
3
), pp.
521
537
.
22.
He
,
C.
, and
Corke
,
T. C.
,
2009
, “
Plasma Flaps and Slats: An Application of Weakly Ionized Plasma Actuators
,”
J. Aircr.
,
46
(
3
), pp.
864
873
.
23.
Little
,
J.
,
Nishihara
,
M.
,
Adamovich
,
I.
, and
Samimy
,
M.
,
2008
, “
Separation Control From the Flap of a High-Lift Airfoil Using DBD Plasma Actuation
,”
AIAA
Paper No. 2008-4200.
24.
Schuele
,
C. Y.
, and
Greenblatt
,
D.
,
2010
, “
Combined Plasma and Gurney Flap Flow Control at Low Flight Reynolds Numbers
,”
AIAA J.
,
48
(
11
), pp.
2714
2718
.
25.
Roth
,
J. R.
,
2001
,
Industrial Plasma Engineering-Volume 2: Applications to Nonthermal Plasma Processing
,
Institute of Physics Publishing
,
Philadelphia
, pp.
226
230
.
26.
Shyy
,
W.
,
Jayaraman
,
B.
, and
Andersson
,
A.
,
2002
, “
Modeling of Glow Discharge-Induced Fluid Dynamics
,”
J. Appl. Phys.
,
92
(
11
), pp.
6434
6443
.
27.
Klausmeyer
,
S. M.
, and
Lin
,
J. C.
,
1997
, “
Comparative Results From a CFD Challenge Over a 2D Three-Element High-Lift Airfoil
,” NASA, Washington, DC, Technical Memorandum 112858.
28.
Cai
,
J. S.
,
Tsai
,
H. M.
, and
Liu
,
F.
,
2003
, “
An Overset Grid Solver for Viscous Computations With Multigrid and Parallel Computing
,”
AIAA
Paper No. 2003-4232.
29.
Thomas
,
F. O.
,
Corke
,
T. C.
,
Iqbal
,
M.
,
Kozlov
,
A.
, and
Schatzman
,
D.
,
2009
, “
Optimization of Dielectric Barrier Discharge Plasma Actuators for Active Aerodynamic Flow Control
,”
AIAA J.
,
47
(
9
), pp.
2169
2178
.
30.
Orlov
,
D. M.
,
Corke
,
T. C.
, and
Patel
,
M. P.
,
2006
, “
Electric Circuit Model for Aerodynamic Plasma Actuator
,”
AIAA
Paper No. 2006-1206.
31.
Roth
,
J. R.
, and
Dai
,
X.
,
2006
, “
Optimization of the Aerodynamic Plasma Actuator as an Electro Hydro Dynamic (EHD) Electrical Device
,”
AIAA
Paper No. 2006–1203.
You do not currently have access to this content.