Cavitation produces undesirable effects within turbines, such as noise, decreases in efficiency, and structural degradation of the device. Two microhydro turbines incorporating Archimedean spiral blade geometries were investigated numerically for cavitation effects using computational fluid dynamics (CFD). Separate blade geometries, one with a uniform blade pitch angle and the other with a 1.5 power pitch, were modeled using the Schnerr–Sauer cavitation model. The method used to determine where cavitation occurs along the blade and within the flow involved varying inlet flow rates and the rotation rate of the blade. Cavitation analysis was conducted locally as well as globally, using both cavitation number and Thoma number. The cavitation number was used to correlate the single-phase to the multiphase results for rotation rates of 250 and 500 rpm, allowing for the single-phase simulations to be used to determine where the onset of cavitation occurs. It was determined that cavitation occurred at the exit of the blade at a flow coefficient of approximately 0.33 for the 1.5 pitch blade geometry, while the uniform blade geometry had a value of 1.35. When the rotation rate was reduced to 250 rpm, cavitation occurred at a flow coefficient of 0.72. From the simulations at both rotation rates, it was determined that both geometry and rotation rate have a significant effect on the onset of cavitation and water vapor inception within the flow field. As the rotation rate of the turbine decreases, the onset of cavitation will be prolonged to larger flow coefficients. As the flow coefficient increased beyond the value at which the onset of cavitation occurs, the intensity of cavitation increases and efficiency drops of up to 20% were experienced by the turbines. Based on the net positive suction head required in the system and the available head in the system, the cavitation results were validated. It was determined that the inception cavitation number, Cai, where the onset of cavitation occurs is approximately −1.51.

References

1.
Paish
,
O.
,
2002
, “
Small Hydro Power: Technology and Current Status
,”
Renewable Sustainable Energy Rev.
,
6
(
6
), pp.
537
556
.
2.
Alexander
,
K. V.
, and
Giddens
,
E. P.
,
2008
, “
Microhydro: Cost-Effective, Modular Systems for Low Heads
,”
Renewable Energy
,
33
(
3
), pp.
1379
1391
.
3.
Schleicher
,
W. C.
,
Riglin
,
J.
, and
Oztekin
,
A.
,
2015
, “
Numerical Characterization of a Preliminary Portable Micro-Hydrokinetic Turbine Rotor Design
,”
Renewable Energy
,
76
, pp.
234
241
.
4.
Alexander
,
K. V.
,
Giddens
,
E. P.
, and
Fuller
,
A. M.
,
2009
, “
Axial-Flow Turbines for Low Head Microhydro Systems
,”
Renewable Energy
,
34
(
1
), pp.
35
47
.
5.
Alexander
,
K. V.
,
Giddens
,
E. P.
, and
Fuller
,
A. M.
,
2009
, “
Radial- and Mixed-Flow Turbines for Low Head Microhydro Systems
,”
Renewable Energy
,
34
(
7
), pp.
1885
1894
.
6.
Brada
,
K.
,
1996
, “
Wasserkraftschnecke-Eigenschaften and Verwendung
,”
6th International Symposium on Heat Exchange and Renewable Energy
, Szczecin-Swinoujscie, Poland, pp.
43
52
.
7.
Singhal
,
A.
,
Athavale
,
M.
,
Li
,
H.
, and
Jiang
,
Y.
,
2002
, “
Mathematical Basis and Validation of the Full Cavitation Model
,”
ASME J. Fluids Eng.
,
124
(
3
), pp.
617
624
.
8.
Ding
,
H.
,
Visser
,
F. C.
,
Jiang
,
Y.
, and
Furmanczyk
,
M.
,
2011
, “
Demonstration and Validation of a 3D CFD Simulation Tool Predicting Pump Performance and Cavitation for Industrial Applications
,”
ASME J. Fluids Eng.
,
133
(
1
), p.
011101
.
9.
Rossetti
,
A.
,
Pavesi
,
G.
,
Ardizzon
,
G.
, and
Santolin
,
A.
,
2014
, “
Numerical Analyses of Cavitating Flow in a Pelton Turbine
,”
ASME J. Fluids Eng.
,
136
(
8
), p.
081304
.
10.
Escaler
,
X.
,
Ekanger
,
J.
,
Francke
,
H.
,
Kjeldson
,
M.
, and
Nielson
,
T.
,
2014
, “
Detection of Draft Tube Surge and Erosive Blade Cavitation in a Full-Scale Francis Turbine
,”
ASME J. Fluids Eng.
,
137
(
1
), p.
011103
.
11.
Zhang
,
D.
,
Shi
,
W.
,
Pan
,
D.
, and
Dubuisson
,
M.
,
2014
, “
Numerical and Experimental Investigation of Tip Leakage Vortex Cavitation Patterns and Mechanisms in an Axial Flow Pump
,”
ASME J. Fluids Eng.
,
137
(
2
), p.
121103
.
12.
Li
,
W. G.
,
2008
, “
NPSHr Optimization of Axial-Flow Pumps
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
074504
.
13.
Srinivasan
,
V.
,
Salazar
,
A.
, and
Saito
,
K.
,
2009
, “
Numerical Simulation of Cavitation Dynamics Using a Cavitation-Induced-Momentum-Defect (CIMD) Correction Approach
,”
Appl. Math. Model.
,
33
(
3
), pp.
1529
1559
.
14.
Medvitz
,
R.
,
Kunz
,
R.
,
Boger
,
D.
, and
Lindau
,
J.
,
2002
, “
Performance Analysis of Cavitating Flow in Centrifugal Pumps Using Multiphase CFD
,”
ASME J. Fluids Eng.
,
124
(
2
), pp.
377
383
.
15.
Shukla
,
S.
, and
Kshirsagar
,
J.
,
2008
, “
Numerical Prediction of Cavitation in Model Pump
,”
ASME
Paper No. IMECE2008-66058.
16.
Li
,
H.
,
Kelecy
,
F.
,
Egelja-Maruszewski
,
A.
, and
Vasquez
,
S.
,
2008
, “
Advanced Computational Modeling of Steady and Unsteady Cavitating Flows
,”
ASME
Paper No. IMECE2008-67450.
17.
Escaler
,
X.
,
Egusquiza
,
E.
,
Farhat
,
M.
,
Avellan
,
F.
, and
Coussirat
,
M.
,
2006
, “
Detection of Cavitation in Hydraulic Turbines
,”
Mech. Syst. Signal Process.
,
20
(
4
), pp.
983
1007
.
18.
Brennan
,
J. R.
,
1996
, “
High Performance Rotary Screw Pumps
,”
Chem. Eng. World
,
31
(
5
), pp.
49
53
.
19.
Brennan
,
J. R.
,
1995
, “
Rotary Pump Drives
,”
World Pumps
,
1995
(
351
), pp.
30
37
.
20.
Brennan
,
J. R.
,
1980
, “
Screw Pumps Finding New Applications
,”
Oil Gas J.
,
78
(
2
), pp.
74
86
.
21.
Nuernbergk
,
D. M.
, and
Rorres
,
C.
,
2013
, “
Analytical Model for Water Inflow of an Archimedes Screw Used in Hydropower Generation
,”
J. Hydraul. Eng.
,
139
(
2
), pp.
213
220
.
22.
Schleicher
,
W. C.
,
Ma
,
H.
,
Riglin
,
J.
,
Wang
,
C.
,
Kraybill
,
Z.
,
Wei
,
W.
,
Klein
,
R.
, and
Oztekin
,
A.
,
2014
, “
Characteristics of a Micro Hydro Turbine
,”
J. Renewable Sustainable Energy
,
6
(
1
), p.
013119
.
23.
Riglin
,
J.
,
Schleicher
,
W. C.
, and
Oztekin
,
A.
,
2014
, “
Diffuser Optimization for a Micro-Hydrokinetic Turbine
,”
ASME
Paper No. IMECE2014-37304.
24.
Riglin
,
J.
,
Schleicher
,
W. C.
, and
Oztekin
,
A.
, “
Numerical Analysis of a Shrouded Micro-Hydrokinetic Turbine Unit
,”
J. Hydraul. Res.
(published online).
25.
Yakhot
,
V.
, and
Orszag
,
S. A.
,
1986
, “
Renormalization-Group Analysis of Turbulence
,”
Appl. Comput. Math.
,
57
(
14
), pp.
1722
1724
.
26.
Yakhot
,
V.
,
Orszag
,
S. A.
,
Thangam
,
S.
,
Gatski
,
T. B.
, and
Speziale
,
C. G.
,
1992
, “
Development of Turbulence Models for Shear Flows by a Double Expansion Technique
,”
Am. Inst. Phys.
,
4
(
7
), pp.
1510
1520
.
27.
Delale
,
C. F.
,
Schnerr
,
G. H.
, and
Sauer
,
J.
,
2001
, “
Quasi-One-Dimensional Steady-State Cavitating Nozzle Flows
,”
J. Fluid Mech.
,
427
, pp.
167
204
.
28.
Sauer
,
J.
,
Winkler
,
G.
, and
Schnerr
,
G. H.
,
2000
, “
Cavitation and Condensation—Common Aspects of Physical Modeling and Numerical Approach
,”
Chem. Eng. Technol.
,
23
(
8
), pp.
663
666
.
29.
Wang
,
C. Y.
, and
Cheng
,
P.
,
1996
, “
A Multiphase Mixture Model for Multiphase, Multicomponent Transport in Capillary Porous Media—I. Model Development
,”
Int. J. Heat Mass Transfer
,
39
(
17
), pp.
3607
3618
.
30.
d'Agostino
,
L.
, and
Salvetti
,
M.
,
2008
,
Fluid Dynamics of Cavitation and Cavitating Turbopumps
, Vol.
496
,
Springer
, Vienna, pp.
1
15
.
31.
White
,
F.
,
2010
,
Fluid Mechanics
,
McGraw-Hill Science/Engineering/Math
.
You do not currently have access to this content.