The mixing behavior of three gas streams was investigated numerically by computational fluid dynamics (CFD) for 16 different geometries to gain insight for the construction of soot measuring systems. The overall goal was to find the design that leads to the fastest mixing of all incoming gas components for a given pipe length by numerical simulations. For this purpose, a main pipe with two symmetrically arranged side inlet pipes was considered, where the angle of inclination of the side pipes and the inflow conditions were varied. Upon the change of the angle of inclination, a transition from a conform to a counter flow is observed. As a variant of the simulation setup, the junction of the three pipes was enclosed by a spherical mixing chamber. The dependency on the angle is much less pronounced in the presence of the additional spherical chamber, which, however, in most cases results in a slower mixing of the gas streams. We found, in general, that the required pipe length to reach a sufficiently homogeneous gas mixture decreases with increasing inclination angles exhibiting the best performance at obtuse angles.

References

1.
Nowak
,
A.
,
Lindner
,
G.
,
Jordan-Gerkens
,
A.
,
Böse
,
N.
, and
Ebert
,
V.
,
2012
, “
Developing a National Standard for Soot Mass Concentration and Opacity at PTB in Germany
,”
16th ETH-Conference on Combustion Generated Nanoparticles
,
Zurich
,
Switzerland
, June 24–27.
2.
Kuntze
,
A.
,
Hildebrandt
,
M.
,
Nowak
,
A.
,
Jordan-Gerkens
,
A.
,
Bergmann
,
D.
,
Buhr
,
E.
, and
Ebert
,
V.
,
2014
, “
Characterization of a PTB-Standard for Particle Number Concentration of Soot Particles
,”
18th ETH-Conference on Combustion Generated Nanoparticles
,
Zurich
,
Switzerland
, June 22–25.
3.
Jing
,
L.
,
1999
, “
Standard Combustion Aerosol Generator (SCAG) for Calibration Purposes
,”
3rd ETH Workshop Nanoparticle Measurement
,
Zurich
,
Switzerland
, Aug. 9–10.
4.
Braun
,
W. D.-I.
,
1995
, “
Gas Mixing
,” German Patent Application No. DE19934344820.
5.
Lee
,
C.-Y.
,
Chang
,
C.-L.
,
Wang
,
Y.-N.
, and
Fu
,
L.-M.
,
2011
, “
Microfluidic Mixing: A Review
,”
Int. J. Mol. Sci.
,
12
(
5
), pp.
3263
3287
.
6.
Gobby
,
D.
,
Angeli
,
P.
, and
Gavriilidis
,
A.
,
2001
, “
Mixing Characteristics of T-Type Microfluidic Mixers
,”
J. Micromech. Microeng.
,
11
(
2
), pp.
126
132
.
7.
Bothe
,
D.
,
Stemich
,
C.
, and
Warnecke
,
H. J.
,
2006
, “
Fluid Mixing in a T-Shaped Micro-Mixer
,”
Chem. Eng. Sci.
,
61
(
9
), pp.
2950
2958
.
8.
Dinh
,
T. X.
, and
Ogami
,
Y.
,
2011
, “
Mixing Enhancement by Microrotor in Step Channel
,”
ASME J. Fluids Eng.
,
133
(
2
), p.
021101
.
9.
Kok
,
J.
, and
van der Wal
,
S.
,
1996
, “
Mixing in T-Junctions
,”
Appl. Math. Modell.
,
20
(
3
), pp.
232
243
.
10.
Merzari
,
E.
,
Pointer
,
W. D.
, and
Fischer
,
P.
,
2013
, “
Numerical Simulation and Proper Orthogonal Decomposition of the Flow in a Counter-Flow T-Junction
,”
ASME J. Fluids Eng.
,
135
(
9
), p.
091304
.
11.
Frank
,
T.
,
Lifante
,
C.
,
Prasser
,
H.-M.
, and
Menter
,
F.
,
2010
, “
Simulation of Turbulent and Thermal Mixing in T-Junctions Using URANS and Scale-Resolving Turbulence Models in ANSYS CFX
,”
Nucl. Eng. Des.
,
240
(
9
), pp.
2313
2328
.
12.
Walker
,
C.
,
Simiano
,
M.
,
Zboray
,
R.
, and
Prasser
,
H.-M.
,
2009
, “
Investigations on Mixing Phenomena in Single-Phase Flow in a T-Junction Geometry
,”
Nucl. Eng. Des.
,
239
(
1
), pp.
116
126
.
13.
Vattenfall
,
2011
, “
Nuclear Energy Agency—Report of the OECD/NEA-Vattenfall T-Junction Benchmark Exercise
,” Committee on the Safety of Nuclear Installations, Technical Report No. NEA/CSNI/R(2011)5
.
14.
Elgobashi
,
S.
,
1991
, “
Particle-Laden Turbulent Flows: Direct Simulation and Closure Models
,”
Appl. Sci. Res.
,
48
(
3
), pp.
301
314
.
15.
Elgobashi
,
S.
,
1994
, “
On Predicting Particle-Laden Turbulent Flows
,”
Appl. Sci. Res.
,
52
(
4
), pp.
309
329
.
16.
Sommerfeld
,
M.
,
van Wachem
,
B.
,
and
Oliemans
,
R.
, eds.,
2008
,
Best Practice Guidelines for Computational Fluid Dynamics of Dispersed Multiphase Flows
, Swedish Industrial Association for Multiphase Flows (SIAMUF), European Research Community on Flow, Turbulence and Combustion (ERCOFTAC).
17.
Strömgren
,
T.
,
2008
, “
Modeling of Turbulent Gas-Particle Flow
,” Ph.D. thesis,
Linn Flow Centre, Department of Mechanics, Royal Institute of Technology
,
Stockholm, Sweden
.
18.
Argyropoulos
,
C.
, and
Markatos
,
N.
,
2015
, “
Recent Advances on the Numerical Modelling of Turbulent Flows
,”
Appl. Math. Modell.
,
39
(
2
), pp.
693
732
.
19.
Menter
,
F. R.
,
1993
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
20.
Aounallah
,
M.
,
Belkadi
,
M.
,
Adjlout
,
L.
, and
Imine
,
O.
,
2010
, “
Thermal Mixing Length Determination by RANS Models in T-Junction
,”
ASME
Paper No. ESDA2010-24232.
21.
ANSYS
,
2012
,
ANSYS CFX User Manual—Release 14.5
,
ANSYS, Inc.
,
Canonsburg, PA
.
22.
Paschedag
,
A. R.
,
2004
,
CFD in der Verfahrenstechnik: Allgemeine Grundlagen und Mehrphasige Anwendungen
,
Wiley-VCH, Weinheim
,
Germany
.
23.
Bird
,
R. B.
,
Stewart
,
W. E.
, and
Lightfoot
,
E. N.
,
1961
,
Transport Phenomena
, Vol.
7
,
Wiley
,
New York
, p.
780
.
24.
Ling
,
J.
,
Elkins
,
C.
, and
Eaton.
,
J.
,
2015
, “
Optimal Turbulent Schmidt Number for RANS Modeling of Trailing Edge Slot Film Cooling
,”
ASME J. Eng. Gas Turbines Power
,
137
(
7
), p.
072605
.
25.
Danckwerts
,
P.
,
1952
, “
The Definition and Measurement of Some Characteristics of Mixtures
,”
Appl. Sci. Res., Sect. A
,
3
(
4
), pp.
279
296
.
26.
Aubin
,
J.
,
Fletcher
,
D.
,
Bertrand
,
J.
, and
Xuereb
,
C.
,
2003
, “
Characterization of the Mixing Quality in Micromixers
,”
Chem. Eng. Technol.
,
26
(
12
), pp.
1262
1270
.
27.
Barth
,
T.
, and
Jesperson
,
D.
,
1989
, “
The Design and Application of Upwind Schemes on Unstructured Meshes
,”
AIAA
Paper No. 89-0366.
28.
Celik
,
I.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
078001
.
29.
Roache
,
P. J.
,
1997
, “
Quantification of Uncertainty in Computational Fluid Dynamics
,”
Annu. Rev. Fluid Mech.
,
29
, pp.
123
160
.
30.
Ali
,
M.
,
2009
, “
Grid Convergence Study for a Two-Dimensional Simulation of Flow Around a Square Cylinder at a Low Reynolds Number
,”
7th International Conference on CFD in the Minerals and Process Industries CSIRO
,
C.
Doolan
and
V.
Wheatley
, eds.,
Melbourne
,
Australia
, Dec. 9–11, CSIRO, Dickson, Australia, pp.
1
6
.
31.
Eca
,
L.
, and
Hoekstra
,
M.
,
2006
, “
Discretization Uncertainty Estimation Based on a Least Squares Version of the Grid Convergence Index
,”
2nd Workshop on CFD Uncertainty Analysis
,
UTL Lisboa, Lisbon
,
Portugal
.
32.
Phillips
,
T. S.
, and
Roy
,
C. J.
,
2014
, “
Richardson Extrapolation-Based Discretization Uncertainty Estimation for Computational Fluid Dynamics
,”
ASME J. Fluids Eng.
,
136
(
12
), p.
121401
.
33.
Oberkampf
,
W. L.
, and
Roy
,
C. J.
,
2010
,
Verification and Validation in Scientific Computing
, 1st ed.,
Cambridge University Press
,
New York
.
You do not currently have access to this content.