The discrete element method allows predicting the flow over rough surfaces in a way consistent with the physics, contrary to the classical equivalent sand grain approach, and without requiring the meshing of all the surface details. Up to now, its use was restricted to boundary layer solvers. This paper is an updated version of the work presented by the author 20 years ago (Aupoix, B., 1994, “Modelling of Boundary Layers Over Rough Surfaces,” Advances in Turbulence V: Proceedings of the Fifth European Turbulence Conference, R. Benzi, ed., Kluwer, Siena, Italy, pp. 16–20): the double-averaging technique, which is now a standard approach in porous media, was proposed to derive the flow equations without boundary layer assumptions. This allows extending the use of the discrete element method to Reynolds–Averaged Navier–Stokes (RANS) solvers. Differences with the standard discrete element method, i.e., different location of the blockage coefficients as well as terms omitted in the standard approach, mainly dispersive stresses and modifications of the turbulence model, are evidenced. The modeling of the different terms brought by the double-averaging procedure is discussed, in light of the knowledge gained both in the discrete element method and in the modeling of flows in porous media, pointing out some differences between the two situations. “High-resolution” RANS simulations are recommended to further improve the modeling.

References

References
1.
Nikuradse
,
J.
,
1933
, “
Strömungsgesetze in rauhen Rohren
,” VDI-Forschungsheft, Technical Report No. 361.
2.
Nikuradse
,
J.
,
1937
, “
Laws of Flows in Rough Pipes
,” NACA, Washington, Technical Memorandum No. 1292.
3.
Bons
,
J.
,
Taylor
,
R.
,
McClain
,
S.
, and
Rivir
,
R.
,
2001
, “
The Many Faces of Turbine Surface Roughness
,”
ASME J. Turbomach.
,
123
(
4
), pp.
739
748
.
4.
Leonardi
,
S.
, and
Castro
,
I.
,
2010
, “
Channel Flow Over Large Cube Roughness: A Direct Numerical Simulation Study
,”
J. Fluid Mech.
,
651
, pp.
519
539
.
5.
Busse
,
A.
, and
Sandham
,
N.
,
2012
, “
Parametric Forcing Approach to Rough-Wall Turbulent Channel Flow
,”
J. Fluid Mech.
,
712
, pp.
169
202
.
6.
Reijasse
,
P.
,
Oswald
,
J.
,
Aupoix
,
B.
, and
Steinfeld
,
P.
,
1998
, “
Expert Evaluation of Ariane 502 Roll Causes
,”
3rd European Symposium on Aerothermodynamics for Space Vehicles, ESTEC
.
7.
Bons
,
J.
,
McClain
,
S.
,
Wang
,
Z.
,
Chi
,
X.
, and
Shih
,
T.
,
2008
, “
A Comparison of Approximate Versus Exact Representations of Roughness for CFD Calculations of Cf and St
,”
ASME J. Turbomach.
,
130
(
2
), p.
021024
.
8.
Anderson
,
A.
,
Hellström
,
J.
,
Andreasson
,
P.
, and
Lundström
,
T.
,
2014
, “
Effect of Spatial Resolution of Rough Surfaces on Numerically Computed Flow Fields With Application to Hydraulic Engineering
,”
Eng. Appl. Comput. Fluid Mech.
,
8
(
3
), pp.
373
381
.
9.
Lien
,
F.-S.
, and
Yee
,
E.
,
2004
, “
Numerical Modeling of the Turbulent Flow Developing Within and Over 3-D Building Array, Part I: A High-Resolution Reynolds-Averaged Navier–Stokes Approach
,”
Boundary Layer Meteorol.
,
112
(
3
), pp.
427
466
.
10.
Taylor
,
R.
,
Coleman
,
H.
, and
Hodge
,
B.
,
1989
, “
Prediction of Heat Transfer in Turbulent Flow Over Rough Surfaces
,”
ASME J. Heat Transfer
,
111
(
2
), pp.
568
572
.
11.
Aupoix
,
B.
, and
Spalart
,
P.
,
2003
, “
Extensions of the Spalart–Allmaras Turbulence Model to Account for Wall Roughness
,”
Int. J. Heat Fluid Flows
,
24
(
4
), pp.
454
462
.
12.
Aupoix
,
B.
,
1994
, “
Modeling of Boundary Layers Over Rough Surfaces
,”
Advances in Turbulence V: Proceedings of the Fifth European Turbulence Conference
,
R.
Benzi
, ed.,
Kluwer
,
Siena, Italy
, pp.
16
20
.
13.
Schlichting
,
H.
,
1936
, “
Experimentelle Untersuchungen zum Rauhigkeitsproblem
,”
Ing.-Arch.
,
7
(
1
), pp.
1
34
.
14.
Schlichting
,
H.
,
1937
, “
Experimental Investigation of the Problem of Surface Roughness
,” NACA, Washington, Technical Memorandum No. 823.
15.
Robertson
,
J.
,
1961
, “
Surface Resistance as a Function of the Concentration and Size of Roughness Elements
,” Ph.D. thesis,
Iowa State University
,
Ames, IA
.
16.
Finson
,
M.
,
1975
,
A Reynolds Stress Model for Boundary Layer Transition With Application to Rough Surfaces, Interim Scientific Report
,
Physical Sciences, Inc.
,
Wakefield, MA
.
17.
Finson
,
M.
, and
Clarke
,
A.
,
1980
, “
The Effect of Surface Roughness Character on Turbulent Reentry Heating
,”
AIAA
Paper No. 80-1459.
18.
Finson
,
M.
,
1982
, “
A Model for Rough Wall Turbulent Heating and Skin Friction
,”
AIAA
Paper No. 82-0199.
19.
Christoph
,
G.
, and
Pletcher
,
R.
,
1983
, “
Predictions of Rough-Wall Skin Friction and Heat Transfer
,”
AIAA J.
,
21
(
4
), pp.
509
515
.
20.
Christoph
,
G.
, and
Fiore
,
A.
,
1983
, “
Numerical Simulation of Flow Over Rough Surfaces, Including Effects of Shock Waves
,”
Air Force Wright Aeronautical Laboratories
, Technical Report No. AFWAL-TR-83-3071.
21.
Christoph
,
G.
, and
Fiore
,
A.
,
1984
, “
Experimental and Computational Study of Roughness Effects at M = 6
,”
AIAA
Paper No. 84-1681.
22.
Khan
,
Z.
,
1983
, “
An Analytical Study of the Effects of Surface Roughness on a Compressible Turbulent Boundary Layer
,” M.S. thesis, Air Force Institute of Technology, Wright-Patterson Air Force Base, OH.
23.
Cebeci
,
T.
,
Smith
,
A.
, and
Mosinskis
,
G.
,
1970
, “
Calculation of Compressible Adiabatic Turbulent Boundary Layers
,”
AIAA J.
,
8
(
11
), pp.
1974
1982
.
24.
Bishnoi
,
P.
,
1988
, “
Computation of Skin Friction and Heat Transfer With Inclusion of Stagnation Heating of Roughness Elements for Turbulent Boundary Layer Flows
,”
AIAA
Paper No. 88-0175.
25.
Lin
,
T.
, and
Bywater
,
R.
,
1982
, “
Turbulence Models for High-Speed, Rough-Wall Boundary Layers
,”
AIAA J.
,
20
(
3
), pp.
325
333
.
26.
Zukauskas
,
A.
,
1972
, “
Heat Transfer from Tubes in Crossflow
,”
Advances in Heat Transfer
, Vol.
8
,
J. P.
Hartnett
, and
T. F.
Irvine
, eds., pp.
93
160
.
27.
Taylor
,
R.
,
Coleman
,
H.
, and
Hodge
,
B.
,
1985
, “
Prediction of Turbulent Rough-Wall Skin Friction Using a Discrete Element Approach
,”
ASME J. Fluids Eng.
,
107
(
2
), pp.
251
257
.
28.
McClain
,
S.
,
Hodge
,
B.
, and
Bons
,
J.
,
2004
, “
Predicting Skin Friction and Heat Transfer for Turbulent Flow Over Real Gas Turbine Surface Roughness Using the Discrete Element Method
,”
ASME J. Turbomach.
,
126
(
2
), pp.
259
267
.
29.
Taylor
,
R.
,
Scaggs
,
W.
, and
Coleman
,
H.
,
1988
, “
Measurement and Prediction of the Effects of Nonuniform Surface Roughness on Turbulent Flow Friction Coefficients
,”
ASME J. Fluids Eng.
,
110
(
4
), pp.
380
384
.
30.
Turner
,
A.
,
Hubbe-Walker
,
S.
, and
Bayley
,
F.
,
2000
, “
Fluid Flow and Heat Transfer Over Straight and Curved Rough Surfaces
,”
Int. J. Heat Mass Transfer
,
43
(
2
), pp.
251
262
.
31.
Bons
,
J.
, and
McClain
,
S.
,
2004
, “
The Effect of Real Turbine Roughness With Pressure Gradient and Heat Transfer
,”
ASME J. Turbomach.
,
126
(
3
), pp.
385
394
.
32.
Klett
,
D.
, and
Kithcart
,
M.
,
1992
, “
Uniform Roughness Studies
,” Mechanical Engineering Department, North Carolina Agricultural and Technical State University, Greensboro, NC, Technical Report WL-TR-92-3041.
33.
McClain
,
S.
,
Collins
,
S.
,
Hodge
,
B.
, and
Bons
,
J.
,
2006
, “
The Importance of the Mean Elevation in Predicting Skin Friction for Flow Over Closely Packed Surface Roughness
,”
ASME J. Fluids Eng.
,
128
(
3
), pp.
579
586
.
34.
Tarada
,
F.
,
1987
, “
Heat Transfer to Rough Turbine Blading
,” Ph.D. thesis, University of Sussex, Brighton, UK.
35.
Tarada
,
F.
,
1990
, “
Prediction of Rough-Wall Boundary Layers Using a Low Reynolds Number k–ε Model
,”
Int. J. Heat Fluid Flow
,
11
(
4
), pp.
331
344
.
36.
McClain
,
S.
, and
Brown
,
J.
,
2009
, “
Reduced Rough-Surface Parametrization for Use With the Discrete-Element Model
,”
ASME J. Turbomach.
,
131
(
2
), p.
021020
.
37.
Chien
,
K.
,
1982
, “
Predictions of Channel and Boundary-Layer Flows With a Low-Reynolds-Number Turbulence Model
,”
AIAA J.
,
20
(
1
), pp.
33
38
.
38.
Stripf
,
M.
,
Schulz
,
A.
,
Bauer
,
H.
, and
Wittig
,
S.
,
2009
, “
Extended Models for Transitional Rough Wall Boundary Layers With Heat Transfer–Part I: Model Formulations
,”
ASME J. Turbomach.
,
131
(
3
), p.
031016
.
39.
Kojima
,
H.
,
Toda
,
K.
, and
Yamamoto
,
M.
,
2002
, “
Computation of Aerodynamic Performance of Airfoil With Surface Roughness
,”
Fifth International Symposium on Engineering Turbulence Modeling and Measurements
,
W.
Rodi
, and
N.
Fueyo
, eds.,
Elsevier
, pp.
629
636
.
40.
Lu
,
M.-H.
, and
Liou
,
W.
,
2009
, “
New Two-Equation Closure for Rough-Wall Turbulent Flows Using the Brinkman Equation
,”
AIAA J.
,
47
(
2
), pp.
386
398
.
41.
Liou
,
W.
, and
Lu
,
M.-H.
,
2009
, “
Rough Wall Modeling Using the Brinkman Equation
,”
J. Turbul.
,
10
(
16
), pp.
1
24
.
42.
Lu
,
H.-H.
, and
Liou
,
W.
,
2010
, “
A New Second-Order Closure Model for Rough-Wall Turbulent Flows Using the Brinkman Equation
,”
Comput. Fluids
,
39
(
4
), pp.
626
639
.
43.
Marle
,
C.
,
1982
, “
On Macroscopic Equations Governing Multiphase Flow With Diffusion and Chemical Reactions in Porous Media
,”
Int. J. Eng. Sci.
,
20
(
5
), pp.
643
662
.
44.
Marle
,
C.
,
1984
, “
Les écoulements polyphasiques en milieu poreux: de l’échelle des pores à l’échelle macroscopique
,”
Ann. Mines
, pp.
1
6
.
45.
Whitaker
,
S.
,
1986
, “
Flows in Porous Media I: A Theoretical Derivation of Darcy's Law
,”
Transp. Porous Media
,
1
(
1
), pp.
3
25
.
46.
Whitaker
,
S.
,
1999
,
The Method of Volume Averaging (Theory and Applications of Transport in Porous Media)
, Vol.
13
,
Kluwer Academic
,
Dordrecht, The Netherlands
.
47.
Bourgeat
,
A.
,
Quintard
,
M.
, and
Whitaker
,
S.
,
1988
, “
Eléments de comparaison entre la méthode d'homogénéisation et la méthode de prise de moyenne avec fermeture
,” Comptes-Rendus de l'Académie des Sciences de Paris, tome 306 Série II, pp.
463
466
.
48.
Crapiste
,
G.
,
Rotstein
,
E.
, and
Whitaker
,
S.
,
1986
, “
A General Closure Scheme for the Method of Volume Averaging
,”
Chem. Eng. Sci.
,
41
(
2
), pp.
227
235
.
49.
Gray
,
W.
,
1975
, “
A Derivation of the Equations for Multi-Phase Transport
,”
Chem. Eng. Sci.
,
30
(
2
), pp.
229
233
.
50.
Raupach
,
M.
, and
Shaw
,
R.
,
1982
, “
Averaging Procedures for Flow Within Vegetation Canopies
,”
Boundary Layer Meteorol.
,
22
(
1
), pp.
79
90
.
51.
Pedras
,
M.
, and
de Lemos
,
M.
,
2001
, “
Macroscopic Turbulence Modelling for Incompressible Flow Through Undeformable Porous Media
,”
Int. J. Heat Mass Transfer
,
44
(
6
), pp.
1081
1093
.
52.
Kuwata
,
Y.
, and
Suga
,
K.
,
2013
, “
Modeling Turbulence Around and Inside Porous Media Based on the Second Moment Closure
,”
Int. J. Heat Fluid Flows
,
43
, pp.
35
51
.
53.
Nakayama
,
A.
, and
Kuwahara
,
F.
,
1999
, “
A Macroscopic Turbulence Model for Flow in a Porous Medium
,”
ASME J. Fluids Eng.
,
121
(
2
), pp.
427
433
.
54.
Hsu
,
T.-J.
,
Sakakiyama
,
T.
, and
Liu
,
P.-F.
,
2002
, “
A Numerical Model for Wave Motions and Turbulence Flows in Front of a Composite Breakwater
,”
Coastal Eng.
,
46
(
1
), pp.
25
50
.
55.
Kuwata
,
Y.
,
Suga
,
K.
, and
Sakurai
,
Y.
,
2014
, “
Development and Application of a Multi-Scale k–ε Model for Turbulent Porous Medium Flows
,”
Int. J. Heat Fluid Flows
,
49
, pp.
135
150
.
56.
Kuwata
,
Y.
, and
Suga
,
K.
,
2015
, “
Progress in the Extension of a Second Moment Closure for Turbulent Environmental Flows
,”
Int. J. Heat Fluid Flows
,
51
, pp.
268
284
.
57.
Mößner
,
M.
, and
Radespiel
,
R.
,
2015
, “
Modeling of Turbulent Flow Over Porous Media Using a Volume Averaging Approach and a Reynolds Stress Model
,”
Comput. Fluids
,
108
, pp.
25
42
.
58.
Coceal
,
O.
, and
Belcher
,
S.
,
2004
, “
A Canopy Model of Mean Winds Through Urban Areas
,”
Q. J. R. Meteorol. Soc.
,
130
(
599
), pp.
1349
1372
.
59.
Jiménez
,
J.
,
2004
, “
Turbulent Flows Over Rough Walls
,”
Annu. Rev. Fluid Mech.
,
36
(
1
), pp.
173
196
.
60.
Hosni
,
M.
,
Coleman
,
H.
, and
Taylor
,
R.
,
1991
, “
Measurements and Calculations of Rough-Wall Heat Transfer in the Turbulent Boundary Layer
,”
Int. J. Heat Mass Transfer
,
34
(
4/5
), pp.
1067
1082
.
61.
Spalart
,
P.
, and
Allmaras
,
S.
,
1992
, “
A One-Equation Turbulence Model for Aerodynamic Flows
,”
AIAA
Paper No. 92-0439.
62.
Spalart
,
P.
, and
Allmaras
,
S.
,
1994
, “
A One-Equation Turbulence Model for Aerodynamic Flows
,”
Rech. Aérosp.
,
1
, pp.
5
21
.
63.
Glikson
,
F.
, and
Aupoix
,
B.
,
1996
, “
Modelling of Compressible Boundary Layer Flows Over Rough Surfaces
,” Third International Symposium on Engineering Turbulence Modelling and Measurements,
W.
Rodi
, and
G.
Bergeles
, eds.,
Elsevier
, pp.
687
696
.
64.
Glikson
,
F.
, and
Aupoix
,
B.
,
1997
, “
Influence of Surface Roughness on Heat Transfer for Low-and High-Speed Flows
,” Eurotherm 97.
You do not currently have access to this content.