A simple variant of recycling and rescaling method to generate inflow turbulence using unstructured grid computational fluid dynamics (CFD) codes is presented. The method has been validated on large eddy simulation (LES) of spatially developing flat plate turbulent boundary layer. The proposed rescaling algorithm is based on the momentum thickness which is more robust and essentially obviates the need of finding the edge of the turbulent boundary layer in unstructured grid codes. Extension of this algorithm to hybrid Reynolds-Averaged Navier-Stokes (RANS) LES type of approaches and for wall-bounded turbomachinery flows is also discussed. Results from annular diffuser with different inflow boundary layer characteristics are presented as an example application to show the utility of such an algorithm.

References

References
1.
Stevens
,
S. J.
, and
Williams
,
G. J.
,
1980
, “
The Influence of Inlet Conditions on the Performance of Annular Diffusers
,”
ASME J. Fluids Eng.
,
102
(
3
), pp.
357
363
.
2.
Akselvoll
,
K.
, and
Moin
,
P.
,
1995
, “
Large Eddy Simulation of Turbulent Confined Coannular Jets and Turbulent Flow Over a Backward Facing Step
,” Report No. tf-63, Thermosciences Division, Department of Mechanical Engineering, Stanford University, Stanford, CA.
3.
Spalart
,
P.
,
1988
, “
Direct Simulation of a Turbulent Boundary Layer up to Rθ = 1410
,”
J. Fluid Mech.
,
187
, pp.
61
98
.
4.
Lund
,
T.
,
Wu
,
X.
, and
Squires
,
K.
,
1998
, “
Generation of Turbulent Inflow Data for Spatially Developing Boundary Layer Simulations
,”
J. Comp. Phys.
,
140
(
2
), pp.
233
258
.
5.
Liu
,
K.
, and
Pletcher
,
R. H.
,
2006
, “
Inflow Conditions for the Large Eddy Simulation of Turbulent Boundary Layers: A Dynamic Recycling Procedure
,”
J. Comp. Phys.
,
219
(
1
), pp.
1
6
.
6.
Spalart
,
P.
,
Strelets
,
M.
, and
Travin
,
A.
,
2006
, “
Direct Numerical Simulation of Large-Eddy-Break-Up Devices in a Boundary Layer
,”
Int. J. Heat Fluid Flow
,
27
(5), pp.
902
910
.
7.
Jewkes
,
J.
,
Chung
,
Y.
, and
Carpenter
,
P.
,
2011
, “
Modification to a Turbulent Inflow Generation Method for Boundary-Layer Flows
,”
AIAA J.
,
49
(
1
), pp.
247
250
.
8.
Morgan
,
B.
,
Larsson
,
J.
,
Kawai
,
S.
, and
Lele
,
S. K.
,
2011
, “
Improving Low-Frequency Characteristics of Recycling/Rescaling Inflow Turbulence Generation
,”
AIAA J.
,
49
(
3
), pp.
582
587
.
9.
Ferrante
,
A.
, and
Elghobashi
,
S. E.
,
2004
, “
A Robust Method of Generating Inflow Conditions for Direct Simulations of Spatially-Developing Turbulent Boundary Layers
,”
J. Comput. Phys.
,
198
(1), pp.
372
387
.
10.
Yao
,
Y. F.
, and
Sandham
,
N. D.
,
2002
, “
DNS of Turbulent Flow Over a Bump With Shock/Boundary-Layer Interactions
,”
Fifth International Symposium on Engineering Turbulence Modeling and Measurements
, pp.
677
686
.
11.
Klein
,
M.
,
Sadiki
,
A.
, and
Janicka
,
J.
,
2003
, “
A Digital Filter Based Generation of Inflow Data for Spatially Developing Direct Numerical or Large Eddy Simulations
,”
J. Comput. Phys.
,
186
(
2
), pp.
652
665
.
12.
Jarrin
,
N.
,
Benhamadouche
,
S.
,
Laurence
,
D.
, and
Prosser
,
R.
,
2006
, “
A Synthetic-Eddy-Method for Generating Inflow Conditions for Large Eddy Simulations
,”
Int. J. Heat Fluid Flow
,
27
(
4
), pp.
585
593
.
13.
Pamiés
,
M.
,
Weiss
,
P.
,
Gamier
,
E.
,
Dick
,
S.
, and
Sagaut
,
P.
,
2009
, “
Generation of Synthetic Turbulent Inflow Data for Large Eddy Simulation of Spatially Evolving Wall-Bounded Flows
,”
Phys. Fluids
,
21
(
4
), p.
045103
.
14.
Keating
,
A.
,
Piomelli
,
U.
,
Balaras
,
E.
, and
Kaltenbach
,
H.
,
2004
, “
A Priori and a Posteriori Tests of Inflow Conditions for Large-Eddy Simulation
,”
Phys. Fluids
,
16
, pp.
4696
4712
.
15.
Spalart
,
P.
,
Deck
,
S.
,
Shur
,
M. L.
,
Squires
,
K. D.
,
Strelets
,
M. K.
, and
Travin
,
A.
,
2006
, “
A New Version of Detached-Eddy Simulation, Resistant to Ambiguous Grid Densities
,”
Theor. Comput. Fluid Dyn.
,
20
(3), pp.
181
195
.
16.
Arolla
,
S. K.
, and
Durbin
,
P. A.
,
2014
, “
Generating Inflow Turbulence for Eddy Simulation of Turbomachinery Flows
,”
AIAA
Paper No. 2014-0593.
17.
Gritskevich
,
M. S.
,
Garbaruk
,
A. V.
,
Schütze
,
J.
, and
Menter
,
F. R.
,
2012
, “
Development of DDES and IDDES Formulations of the k-ω Shear Stress Transport Model
,”
Flow Turbul. Combust.
,
88
(3), pp.
431
449
.
18.
Germano
,
M.
,
Piomelli
,
U.
,
Moin
,
P.
, and
Cabot
,
W. H.
,
1991
, “
A Dynamic Subgrid-Scale Eddy Viscosity Model
,”
Phys. Fluids A
,
3
(
7
), p.
1760
.
19.
Lilly
,
D. K.
,
1992
, “
A Proposed Modification of the Germano Subgrid-Scale Closure Method
,”
Phys. Fluids A
,
4
(3), pp.
633
635
.
20.
DeGraaff
,
D. B.
, and
Eaton
,
J. K.
,
2000
, “
Reynolds-Number Scaling of the Flat-Plate Turbulent Boundary Layer
,”
ASME J. Fluid Mech.
,
422
, pp.
319
346
.
21.
Pope
,
S. B.
,
2003
,
Turbulent Flows
,
Cambridge University
,
Cambridge, UK
.
22.
Choi
,
H.
, and
Moin
,
P.
,
2011
, “
Grid-Point Requirements for Large Eddy Simulation: Chapman's Estimates Revisited
,” Center for Turbulence Research, Annual Research Briefs.
23.
Kravchenko
,
A.
,
Moin
,
P.
, and
Moser
,
R.
,
1996
, “
Zonal Embedded Grids for Numerical Simulations of Wall-Bounded Turbulent Flows
,”
J. Comput. Phys.
,
127
(
2
), pp.
412
423
.
24.
Durbin
,
P. A.
, and
Pettersson Reif
,
B. A.
,
2011
,
Statistical Theory and Mathematical Modeling for Turbulent Flows
,
Wiley
,
New York
.
You do not currently have access to this content.