In order to accurately predict the hydrodynamic behavior of gas and solid phases using an Eulerian–Eulerian approach, it is crucial to use appropriate drag models to capture the correct physics. In this study, the performance of seven drag models for fluidization of Geldart A particles of coal, poplar wood, and their mixtures was assessed. In spite of the previous findings that bode badly for using predominately Geldart B drag models for fine particles, the results of our study revealed that if static regions of mass in the fluidized beds are considered, these drag models work well with Geldart A particles. It was found that drag models derived from empirical relationships adopt better with Geldart A particles compared to drag models that were numerically developed. Overall, the Huilin–Gidaspow drag model showed the best performance for both single solid phases and binary mixtures, however, for binary mixtures, Wen–Yu model predictions were also accurate.

References

1.
Annual Energy Outlook
,
2008
, “
Department of Energy/US Energy Information Administration, DOE/EIA-0383
,” http://www.eia.gov/forecasts/aeo/
2.
Baskara Sethupathy
,
S.
, and
Natarajan
,
E.
,
2012
, “
Hydrodynamics Study on Gasification of Biomass in a Fluidized Bed Gasifier
,”
Int. J. Eng. Sci. Technol.
,
4
(
1
), pp.
316
323
.
3.
Hartmann
,
D.
, and
Kaltschmitt
,
M.
,
1999
, “
Electricity Generation From Solid Biomass Via Co-Combustion With Coal: Energy and Emission Balances From a German Case Study
,”
Biomass Bioenergy
,
16
(
6
), pp.
397
406
.
4.
Biagini
,
E.
,
Barontini
,
F.
, and
Tognotti
,
L.
,
2006
, “
Devolatilization of Biomass Fuels and Biomass Components Studied by TG/FTIR Technique
,”
Ind. Eng. Chem. Res.
,
45
(
13
), pp.
4486
4493
.
5.
Kumar
,
A.
,
Jones
,
D. D.
, and
Hanna
,
M. A.
,
2009
, “
Thermochemical Biomass Gasification: A Review of the Current Status of the Technology
,”
Energies
,
2
(
3
), pp.
556
581
.
6.
Prins
,
M. J.
,
Ptasinski
,
K. J.
, and
Janssen
,
F. J. J. G.
,
2007
, “
From Coal to Biomass Gasification: Comparison of Thermodynamic Efficiency
,”
Energy
,
32
(
7
), pp.
1248
1259
.
7.
Sun
,
J.
, and
Battaglia
,
F.
,
2006
, “
Hydrodynamic Modeling of Particle Rotation for Segregation in Bubbling Gas-Fluidized Beds
,”
Chem. Eng. Sci.
,
61
(
5
), pp.
1470
1479
.
8.
Deza
,
M.
,
Franka
,
N. P.
,
Heindel
,
T. J.
, and
Battaglia
,
F.
,
2009
, “
CFD Modeling and X-Ray Imaging of Biomass in a Fluidized Bed
,”
ASME J. Fluids Eng.
,
131
(
11
), p.
111303
.
9.
Geldart
,
D.
,
1973
, “
Types of Gas Fluidization
,”
Powder Technol.
,
7
(
5
), pp.
285
292
.
10.
Cody
,
G. D.
, and
Goldfarb
,
D. J.
,
1997
, “
Discontinuity in Particle Granular Temperature Observed in Gas Fluidized Bed Across Geldart B/A Boundary—Implications for Stability and Properties of the Geldart A Phase
,”
Materials Research Society Symposium, Materials Research Society
, Vol.
464
, pp.
325
338
.
11.
Cody
,
G. D.
, and
Goldfarb
,
D. J.
,
1998
, “
Bifurcations in Particle Granular Temperature of Monodispersed Glass Spheres at the Geldart A/B Transition
,”
Ninth Engineering Foundation Conference on Fluidization
,
Engineering Foundation
, pp.
53
60
.
12.
Valverde
,
J. M.
,
Castellanos
,
A.
, and
Sanchez Quintanilla
,
M. A.
,
2001
, “
Self-Diffusion in a Gas-Fluidized Bed of Fine Powder
,”
Phys. Rev. Lett.
,
86
(
14
), pp.
3020
3023
.
13.
Lundberg
,
J.
, and
Halvorsen
,
B. M.
,
2008
, “
A Review of Some Existing Drag Models Describing the Interaction Between Phases in a Bubbling Fluidized Bed
,”
49th Scandinavian Conference on Simulation and Modeling
,
Oslo University College
,
Oslo, Norway
.
14.
Vejahati
,
F.
,
Mahinpey
,
N.
,
Ellis
,
N.
, and
Nikoo
,
M. B.
,
2009
, “
CFD Simulation of Gas–Solid Bubbling Fluidized Bed: A New Method for Adjusting Drag Law
,”
Can. J. Chem. Eng.
,
87
(
1
), pp.
19
30
.
15.
Loha
,
C.
,
Chattopadhyay
,
H.
, and
Chatterjee
,
P.
,
2012
, “
Assessment of Drag Models in Simulating Bubbling Fluidized Bed Hydrodynamics
,”
Chem. Eng. Sci.
,
75
(
18
), pp.
400
407
.
16.
Kanholy
,
S. K.
,
Chodak
,
J.
,
Lattimer
,
B. Y.
, and
Battaglia
,
F.
,
2012
, “
Modeling and Predicting Gas-Solid Fluidized Bed Dynamics to Capture Nonuniform Inlet Conditions
,”
ASME J. Fluids Eng.
,
134
(
11
), p.
111303
.
17.
Ferschneider
,
G.
, and
Mege
,
P.
,
1996
, “
Eulerian Simulation of Dense Phase Fluidized Beds
,”
Oil Gas Sci. Tech. Rev. IFP
,
51
(
2
), pp.
301
307
.
18.
Bayle
,
J.
,
Mege
,
P.
, and
Gauthier
,
T.
,
2001
, “
Dispersion of Bubble Flow Properties in a Turbulent FCC Fluidized Bed
,”
M.
Kwauk
,
J.
Li
, and
W. C.
Yang
, eds.,
Fluidization X
,
Engineering Foundation
,
New York
, pp.
125
132
.
19.
Zimmermann
,
S.
, and
Taghipour
,
F.
,
2005
, “
CFD Modeling of the Hydrodynamics and Reaction Kinetics of FCC Fluidized Bed Reactors
,”
Ind. Eng. Chem. Res.
,
44
(
26
), pp.
9818
9827
.
20.
McKeen
,
T.
, and
Pugsley
,
T.
,
2003
, “
Simulation and Experimental Validation of a Freely Bubbling Bed of FCC Catalyst
,”
Powder Technol.
,
129
(
1–3
), pp.
139
152
.
21.
Gibilaro
,
L. G.
,
Di Felice
,
R.
, and
Waldram
,
S. P.
,
1985
, “
Generalized Friction Factor and Drag Coefficient Correlations for Fluid-Particle Interactions
,”
Chem. Eng. Sci.
,
40
(
10
), pp.
1817
1823
.
22.
Ye
,
M.
,
Wang
,
J.
,
van der Hoef
,
M. A.
, and
Kuipers
,
J. A. M.
,
2008
, “
Two-Fluid Modeling of Geldart A Particles in Gas-Fluidized Beds
,”
Particuology
,
6
(
6
), pp.
540
548
.
23.
Wen
,
C. Y.
, and
Yu
,
Y. H.
,
1966
, “
Mechanics of Fluidization
,”
Chem. Eng. Prog., Symp. Ser.
,
62
, pp.
100
111
.
24.
Parmentier
,
J. F.
,
Simonin
,
O.
, and
Delsart
,
O.
,
2008
, “
A Numerical Study of Fluidization Behavior of Geldart B, A/B and A Particles Using an Eulerian Multifluid Modeling Approach
,” Proc. of the 9th Int. Conference on Circulating Fluidized Beds,
Circulating Fluidized Bed Technology IX
,
Hamburg, Germany
TuTech Innovation GmbH, pp. 331–336.
25.
Wang
,
J.
,
van der Hoef
,
M. A.
, and
Kuipers
,
J. A. M.
,
2009
, “
Why the Two-Fluid Model Fails to Predict the Bed Expansion Characteristics of Geldart A Particles in Gas-Fluidized Beds: A Tentative Answer
,”
Chem. Eng. Sci.
,
64
(
3
), pp.
622
625
.
26.
Wang
,
J.
,
van der Hoef
,
M. A.
, and
Kuipers
,
J. A. M.
,
2010
, “
CFD Study of the Minimum Bubbling Velocity of Geldart A Particles in Gas-Fluidized Beds
,”
Chem. Eng. Sci.
,
65
(
12
), pp.
3772
3785
.
27.
Wang
,
J.
,
2009
, “
A Review of Eulerian Simulation of Geldart A Particles in Gas-Fluidized Beds
,”
Ind. Eng. Chem. Res.
,
48
(
12
), pp.
5567
5577
.
28.
Lu
,
B.
,
Wang
,
W.
, and
Li
,
J.
,
2011
, “
Eulerian Simulation of Gas-Solid Flows With Particles of Geldart Groups A, B and D Using EMMS-Based Meso-Scale Model
,”
Chem. Eng. Sci.
,
66
(
20
), pp.
4624
4635
.
29.
Benzarti
,
S.
,
Mhiri
,
H.
, and
Bournot
,
H.
,
2012
, “
Drag Models for Simulation Gas-Solid Flow in the Bubbling Fluidized Bed of FCC Particles
,”
World Acad. Sci. Eng. Tech.
,
6
(1), pp.
980
985
.
30.
Syamlal
,
M.
,
Rogers
,
W.
, and
O'Brien
,
T.
,
1993
, “
MFIX Documentation: Theory Guide
,” Technical Note DOE/METC-95/1013 and NTIS/DE95000031, Department of Energy.
31.
Syamlal
,
M.
,
1987
, “
The Particle-Particle Drag Term in a Multiparticle Model of Fluidization
,” Topical Report Nos. DOE/MC/21353-2373 and NTIS/DE87006500, National Technical Information Service, Springfield, VA.
32.
Gidaspow
,
D.
,
1994
,
Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions
,
Academy
,
Boston, MA
.
33.
Syamlal
,
M.
, and
O'Brien
,
T. J.
,
1988
, “
Simulation of Granular Layer Inversion in Liquid Fluidized Beds
,”
Int. J. Multiphase Flow
,
14
(
4
), pp.
473
481
.
34.
Garside
,
J.
, and
Al-Dibouni
,
M. R.
,
1977
, “
Velocity-Voidage Relationships for Fluidization and Sedimentation
,”
Ind. Eng. Chem. Process Des. Dev.
,
16
(
2
), pp.
206
214
.
35.
Dalla Valle
,
J. M.
,
1948
,
Micromeritics: The Technology of Fine Particles
,
Pitman
,
London
.
36.
Ergun
,
S.
,
1952
, “
Fluid Flow Through Packed Columns
,”
Chem. Eng. Prog.
,
48
(
2
), pp.
89
94
.
37.
Huilin
,
L.
, and
Gidaspow
,
D.
,
2003
, “
Hydrodynamics of Binary Fluidization in a Riser: CFD Simulation Using Two Granular Temperatures
,”
Chem. Eng. Sci.
,
58
(
16
), pp.
3777
3792
.
38.
Lathouwers
,
D.
, and
Bellan
,
J.
,
2000
, “
Modeling and Simulation of Bubbling Fluidized Beds Containing Particle Mixtures
,”
Proc. Combust. Inst.
,
28
(
2
), pp.
2297
2304
.
39.
Hill
,
R. J.
,
Koch
,
D. L.
, and
Ladd
,
A. J. C.
,
2001
, “
The First Effects of Fluid Inertia on Flows in Ordered and Random Arrays of Spheres
,”
J. Fluid Mech.
,
448
(
12
), pp.
213
241
.
40.
Hill
,
R. J.
,
Koch
,
D. L.
, and
Ladd
,
A. J. C.
,
2001
, “
Moderate-Reynolds-Number Flows in Ordered and Random Arrays of Spheres
,”
J. Fluid Mech.
,
448
(
12
), pp.
243
278
.
41.
Benyahia
,
S.
,
Syamlal
,
M.
, and
O'Brien
,
T. J.
,
2006
, “
Extension of Hill–Koch–Ladd Drag Correlation Over All Ranges of Reynolds Number and Solids Volume Fraction
,”
Powder Technol.
,
162
(
2
), pp.
166
174
.
42.
Beetstra
,
R.
,
van der Hoef
,
M. A.
, and
Kuipers
,
J. A. M.
,
2007
, “
Drag Force of Intermediate Reynolds Number Flow Past Mono- and Bidisperse Arrays of Spheres
,”
AIChE J.
,
53
(
2
), pp.
489
501
.
43.
Holloway
,
W.
,
Yin
,
X.
, and
Sundaresan
,
S.
,
2010
, “
Fluid-Particle Drag in Inertial Polydisperse Gas-Solid Suspensions
,”
AIChE J.
,
56
(
8
), pp.
1995
2004
.
44.
Yin
,
X.
, and
Sundaresan
,
S.
,
2009
, “
Drag Law for Bidisperse Gas-Solid Suspensions Containing Equally Sized Spheres
,”
Ind. Eng. Chem. Res.
,
48
(
1
), pp.
227
241
.
45.
Syamlal
,
M.
,
1998
, “
High Order Discretization Methods for the Numerical Simulation of Fluidized Beds
,” Technical Note DOE/FETC/C-98/7305 and CONF-971113, Department of Energy.
46.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere Publishing Corporation
,
New York
.
47.
Syamlal
,
M.
,
1998
, “
MFIX Documentation: Numerical Technique
,” Technical Note DOE/MC31346-5824 and DE98002029, Department of Energy.
48.
Estejab
,
B.
, and
Battaglia
,
F.
,
2013
, “
Modeling of Coal-Biomass Fluidization Using Computational Fluid Dynamics
,”
ASME
Paper No. IMECE2013-63339.
49.
Johnson
,
P. C.
, and
Jackson
,
R.
,
1987
, “
Frictional–Collisional Constitutive Relations for Granular Materials, With Application to Plane Shearing
,”
J. Fluid Mech.
,
176
(
3
), pp.
67
93
.
50.
Celik
,
I. B.
,
Ghia
,
U.
,
Roache
,
P. J.
,
Freitas
,
C. J.
,
Coleman
,
H.
, and
Raad
,
P. E.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
078001
.
51.
Deza
,
M.
, and
Battaglia
,
F.
,
2013
, “
A CFD Study of Pressure Fluctuations to Determine Fluidization Regimes in Gas-Solid Beds
,”
ASME J. Fluids Eng.
,
135
(
10
), p.
101301
.
You do not currently have access to this content.