An explosion at the entrance of an underground bunker and a suicide bomber inside an airplane are examples of scenarios in which blast waves propagate in tunnels and corridor-type structures. The need to attenuate the shock/blast wave propagating downstream a corridor and mitigate the developed loads inside the structure is essential. The interaction of a shock/blast wave with an obstacle inside a tunnel can dramatically reduce its strength. Earlier researches revealed that the dominant parameter in attenuating a shock wave by rigid barriers is the barrier opening ratio (i.e., the cross section that is open to the flow divided by the total cross section of the tunnel). Decreasing the opening ratio from 0.6 to 0.2 increased the attenuation by about 40%. Based on strong dependence of the attenuation on the opening ratio, a barrier designed to adjust its opening ratio to the loads exerted upon it is essential. In our previous study, we found that the effect of the rigid barrier geometry becomes more significant when the barrier inclination angle is larger, i.e., the barriers inclined toward the oncoming shock wave were found to be more effective in reducing the transmitted shock wave intensity than those inclined in the opposite direction. The pressure difference between both sides of the barrier exerts massive loads on the barrier. In the present ongoing research, based on a numerical approach using a commercial solver (msc.dytran), we focus on the geometry of a dynamic barrier, which changes its orientation as a response to the loads exerted on it. As a result, the barrier opening ratio, which as mentioned earlier strongly affects the shock wave attenuation, changes too. In this study, the feasibility of a dynamic barrier and the complex flow regime around it are investigated. The rapid pressure drop downstream of the barrier depends both on the shock wave strength and the barrier material and geometrical properties. Barriers with various geometries and properties are used to investigate the concept of a deflecting/rotating barrier as a response to the shock wave loads exerted upon it. For the first time, a new and exciting proven concept of a dynamic barrier, which reacts to the loads exerted upon it from a passing shock wave, and dramatically reduces the shock-induced pressure jump downstream of the barrier, is demonstrated.

References

1.
Schenker
,
A.
,
Anteby
,
I.
,
Gal
,
E.
,
Kivity
,
Y.
,
Nizri
,
E.
,
Sadot
,
O.
,
Michaelis
,
R.
,
Levintant
,
O.
, and
Ben-Dor
,
G.
,
2008
, “
Full-Scale Field Tests of Concrete Slabs Subjected to Blast Loads
,”
Int. J. Impact Eng.
,
35
(
3
), pp.
184
198
.
2.
Hanssen
,
A. G.
,
Enstock
,
L.
, and
Langseth
,
M.
,
2002
, “
Close-Range Blast Loading of Aluminum Foam Panels
,”
Int. J. Impact Eng.
,
27
(
6
), pp.
593
618
.
3.
Elperin
,
T.
,
Ben-Dor
,
G.
, and
Igra
,
O.
,
1987
, “
Head-on Collision of Normal Shock Waves in Dusty Gases
,”
Int. J. Heat Fluid Flow
,
8
(
4
), pp.
303
308
.
4.
Aizik
,
F.
,
Ben-Dor
,
G.
,
Elperin
,
T.
,
Igra
,
O.
, and
Mond
,
M.
,
1995
, “
Attenuation Law of Planar Shock Waves Propagating Through Dust-Gas Suspensions
,”
AIAA J.
,
33
(
5
), pp.
953
955
.
5.
Aizik
,
F.
,
Ben-Dor
,
G.
,
Elperin
,
T.
, and
Igra
,
O.
,
2001
, “
General Attenuation Laws for Spherical Shock Waves in Pure and Dusty Gases
,”
AIAA J.
,
39
(
5
), pp.
969
971
.
6.
Britan
,
A.
,
Ben-Dor
,
G.
,
Shapiro
,
H.
,
Liverts
,
M.
, and
Shreiber
,
I.
,
2007
, “
Drainage Effects on Shock Wave Propagating Through Aqueous Foams
,”
Colloids Surf. A
,
309
(
1–3
), pp.
137
150
.
7.
Shin
,
Y. S.
,
Lee
,
M.
,
Lam
,
K. Y.
, and
Yeo
,
K. S.
,
1998
, “
Modeling Mitigation Effects of Water Shield on Shock Waves
,”
Shock Vib.
,
5
(
4
), pp.
225
234
.
8.
Zhao
,
H. Z.
,
Lam
,
K. Y.
, and
Chong
,
O. Y.
,
2001
, “
Water Mitigation Effects on the Detonations in Confined Chamber and Tunnel System
,”
Shock Vib.
,
8
(
6
), pp.
349
355
.
9.
Cheng
,
M.
,
Hung
,
K. C.
, and
Chong
,
O. Y.
,
2005
, “
Numerical Study of Water Mitigation Effects on Blast Wave
,”
Shock Waves
,
14
(
3
), pp.
217
223
.
10.
Igra
,
O.
,
Wu
,
X.
,
Falcovitz
,
J.
,
Meguro
,
T.
, and
Takayama
,
K.
,
2001
, “
Experimental and Theoretical Study of Shock Wave Propagation Through Double-Bend Ducts
,”
J. Fluid Mech.
,
437
, pp.
255
282
.
11.
Kosinski
,
P.
,
2006
, “
On Shock Wave Propagation in a Branched Channel With Particles
,”
Shock Waves
,
15
(
1
), pp.
13
20
.
12.
Jiang
,
Z.
,
Takayama
,
K.
,
Babinsky
,
H.
, and
Meguro
,
T.
,
1997
, “
Transient Shock Wave Flows in Tubes With a Sudden Change in Cross Section
,”
Shock Waves
,
7
(
3
), pp.
151
162
.
13.
Dosanjh
,
D. S.
,
1956
, “
Interaction of Grids With Traveling Shock Waves
,” NASA Technical Report No. NACA TN 3680.
14.
Britan
,
A.
,
Karpov
,
A. V.
,
Vasilev
,
E. I.
,
Igra
,
O.
,
Ben-Dor
,
G.
, and
Shapiro
,
E.
,
2004
, “
Experimental and Numerical Study of Shock Wave Interaction With Perforated Plates
,”
ASME J. Fluids Eng.
,
126
(
3
), pp.
399
409
.
15.
Sasoh
,
A.
,
Matsuoka
,
K.
,
Nakashio
,
K.
,
Timofeev
,
E.
,
Takayama
,
K.
,
Voinovich
,
P.
,
Saito
,
T.
,
Hirano
,
S.
, and
Ono
,
S.
,
1998
, “
Attenuation of Weak Shock Waves Along Pseudo-Perforated Walls
,”
Shock Waves
,
8
(
3
), pp.
149
159
.
16.
Britan
,
A.
,
Igra
,
O.
,
Ben-Dor
,
G.
, and
Shapiro
,
H.
,
2006
, “
Shock Wave Attenuation by Grids and Orifice Plates
,”
Shock Waves
,
16
(
1
), pp.
1
15
.
17.
Franks
,
W. J.
,
1957
, “
Interaction of a Shock Wave With a Wire Screen
,” UTIA Technical Note No. 13.
18.
Lind
,
C.
,
Cybyk
,
B. Z.
, and
Boris
,
J. P.
,
1999
, “
Attenuation of Shocks: High Reynolds Number Porous Flows
,”
Shock Waves
,
G. J.
Ball
,
R.
Hillier
, and
G. T.
Roberts
, eds.,
Imperial College
,
London
, pp.
1135
1140
.
19.
Berger
,
S.
,
Sadot
,
O.
, and
Ben-Dor
,
G.
,
2010
, “
Experimental Investigation on the Shock-Wave Load Attenuation by Geometrical Means
,”
Shock Waves
,
20
(
1
), pp.
29
40
.
20.
Glazer
,
E.
,
Sadot
,
O.
,
Hadjadj
,
A.
, and
Chaudhuri
,
A.
,
2011
, “
Velocity Scaling of a Reflected Shock Wave Off a Circular Cylinder
,”
Phys. Rev. E
,
83
(
6
), p.
066317
.
21.
Berger
,
S.
,
Sadot
,
O.
, and
Ben-Dor
,
G.
,
2015
, “
Experimental and Numerical Investigations of Shock-Wave Attenuation by Geometrical Means: A Single Barrier Configuration
,”
Eur. J. Mech.-B/Fluids
,
50
, pp.
60
70
.
22.
Baum
,
J. D.
, and
Lohner
,
R.
,
1992
, “
Numerical Simulation of Passive Shock Deflector Using an Adaptive Finite Element Scheme on Unstructured Grids
,”
AIAA
Paper No. 92-0448.
23.
Britan
,
A.
,
Kivity
,
Y.
, and
Ben-Dor
,
G.
,
2006
, “
Passive Deflector for Attenuating Shock Waves
,”
Shock Waves
,
G.
Jagadeesh
,
E.
Arunan
, and
K. P. J.
Reddy
, eds.,
University Press (India)
,
Bangalore, India
, pp.
1031
1036
.
24.
Ohtomo
,
F.
,
Ohtani
,
K.
, and
Takayama
,
K.
,
2005
, “
Attenuation of Shock Waves Propagating Over Arrayed Baffle Plates
,”
Shock Waves
,
14
(
5–6
), pp.
379
390
.
25.
Kim
,
H.-D.
,
Kweon
,
Y.-H.
, and
Setoguchi
,
T.
,
2004
, “
A Study of a Weak Shock Wave Propagating Through an Engine Exhaust Silencer System
,”
J. Sound Vib.
,
275
(
3
), pp.
893
915
.
26.
Abe
,
A.
, and
Takayama
,
K.
,
2000
, “
Attenuation of Shock Waves Propagating Over Arrayed Spheres
,”
Proc. SPIE
,
4183
, p.
582
.
27.
Skews
,
B. W.
,
Draxl
,
M. A.
,
Felthun
,
L.
, and
Seitz
,
M. W.
,
1998
, “
Shock Wave Trapping
,”
Shock Waves
,
8
(
1
), pp.
23
28
.
28.
Chaudhuri
,
A.
,
Hadjadj
,
A.
,
Sadot
,
O.
, and
Ben-Dor
,
G.
,
2013
, “
Numerical Study of Shock-Wave Mitigation Through Matrices of Solid Obstacles
,”
Shock Waves
,
23
(
1
), pp.
91
101
.
29.
Berger
,
S.
,
Sadot
,
O.
, and
Ben-Dor
,
G.
,
2015
, “
Numerical Investigation of Shock Wave Attenuation by Geometrical Means: Double Barrier Configuration
,”
ASME J. Fluids Eng.
,
137
(
4
), p.
041203
.
30.
Giordano
,
J.
,
Jourdan
,
G.
,
Burtschell
,
Y.
,
Medale
,
M.
,
Zeitoun
,
D. E.
, and
Houas
,
L.
,
2005
, “
Shock Wave Impacts on Deforming Panel, an Application of Fluid–Structure Interaction
,”
Shock Waves
,
14
(
1–2
), pp.
103
110
.
31.
Biamino
,
L.
,
Jourdan
,
G.
,
Mariani
,
C.
,
Igra
,
O.
,
Massol
,
A.
, and
Houas
,
L.
,
2011
, “
Experimental Investigation of Door Dynamic Opening Caused by Impinging Shock Wave
,”
Shock Waves
,
21
(
1
), pp.
19
28
.
32.
Biamino
,
L.
,
Igra
,
O.
,
Jourdan
,
G.
, and
Houas
,
L.
,
2014
, “
Effect of an Impinging Shock Wave on a Partially Opened Door
,”
Shock Waves
,
24
(
2
), pp.
115
121
.
33.
Ben-Dor
,
G.
,
2007
,
Shock Wave Reflection Phenomena
, 2nd ed.,
Springer
,
Berlin
.
34.
MSC/DYTRAN User’s Manual
,
2012
, MSC.Software.
35.
Kivity
,
Y.
,
Falcovich
,
J.
,
Ben-David
,
Y.
, and
Bar-On
,
E.
,
2010
, “
Dynamic Drag of a Sphere Subjected to Shock Wave: Validation of Four Hydro-Codes
,”
21st International Symposium Military Aspects of Blast & Shock
,
Jerusalem, Israel
.
36.
Hoffmann
,
K. A.
, and
Chiang
,
S. T.
,
1998
,
Computational Fluid Dynamics for Engineers
, Vol.
1
,
Engineering Education System
,
Wichita, KS
, Chap. 6–
8
.
37.
Hoffmann
,
K. A.
, and
Chiang
,
S. T.
,
1993
,
Computational Fluid Dynamics for Engineers
, Vol.
2
,
Engineering Education System
,
Wichita, KS
, Chap. 16.
You do not currently have access to this content.