The casing treatment is an effective method for increasing the stall margin of compressors and enhancing the flow distribution at the blades tip. The present numerical study focuses on making an optimization of the casing groove parameters which can enhance the centrifugal compressor performance during stall. The casing grooves parameters considered are the groove cross section aspect ratio (the groove height to width ratio), groove location, and the number of grooves. Five groove aspect ratios were considered ranging from 0.2 to 1.8. Three groove locations were studied: at full blades leading edge, at splitter blades leading edge, and after the splitter blades leading edge by a distance equals to the distance between the first and second groove locations. Comparisons were made among different cases with number of grooves starting from one up to seven grooves located at the most effective locations and have the optimum cross section dimensions as deduced from the results of the groove aspect ratio and groove location optimization. Results showed that by using groove aspect ratio less than one, the reinjected groove flow is relatively weak but when the aspect ratio is equal to one, there is enough space inside the groove for the flow to circulate and generate the reinjected groove flow with higher velocities. When the groove aspect ratio was increased to be more than one, the reinjected flow velocity was increased slightly and its effective area was increased in the circumferential direction. Results also indicated that the best location for the groove is at the full blades leading edge because the stall area can be minimized and controlled in a better way comparing with the other groove locations. Results showed that by increasing the number of grooves, the surge margin (SM) increases and the isentropic efficiency decreases, but the stall area at the shroud surface decreases in size and its location is shifted toward the blades trailing edge.

References

1.
Prince
,
D.
, Jr.
,
Wisler
,
D.
, and
Hilvers
,
D.
,
1974
, “
Study of Casing Treatment Stall Margin Improvement Phenomena for Compressor Rotor Blade Tips Compressor Blades Rotating Stalls
,” NASA, Washington, DC, Technical Report No. NASA-CR-134552.
2.
Osborn
,
W. M.
,
Lewis
,
G. W.
, and
Heidelberg
,
L. J.
,
1971
, “
Effect of Several Porous Casing Treatments on Stall Limit and on Overall Performance of an Axial Flow Compressor Rotor
,” National Aeronautics and Space Administration, Washington, DC, Technical Report No. NASA-TN-D-6537.
3.
Seitz
,
P. A.
,
1999
, “
Casing Treatment for Axial Flow Compressors
,” Doctoral dissertation, University of Cambridge, Cambridge, UK.
4.
Xu
,
W.
,
Wang
,
T.
,
Gu
,
C.
, and
Ding
,
L.
,
2012
, “
Numerical Investigation of a Centrifugal Compressor With Holed Casing Treatment
,”
ASME J. Eng. Gas Turbines Power
,
134
(
4
), p.
044502
.
5.
Park
,
C.-Y.
,
Choi
,
Y.-S.
,
Lee
,
K.-Y.
, and
Yoon
,
J.-Y.
,
2012
, “
Numerical Study on the Range Enhancement of a Centrifugal Compressor With a Ring Groove System
,”
J. Mech. Sci. Technol.
,
26
(
5
), pp.
1371
1378
.
6.
Yang
,
M.
,
Martinez-Botas
,
R.
,
Zhang
,
Y.
,
Zheng
,
X.
,
Bamba
,
T.
,
Tamaki
,
H.
, and
Li
,
Z.
,
2011
, “
Investigation of Self-Recycling-Casing-Treatment (SRCT) Influence on Stability of High Pressure Ratio Centrifugal Compressor With a Volute
,”
ASME
Paper No. GT2011-45065.
7.
Gao
,
P.
,
Chu
,
W.-L.
,
Wu
,
Y.-H.
, and
Deng
,
W.-J.
,
2007
, “
Mechanism of Stall Margin Improvement in a Centrifugal Compressor With Circumferential Grooves Casing Treatment
,”
J. Propul. Technol.
,
28
(
4
), pp.
383
387
.
8.
Greitzer
,
E.
,
Nikkanen
,
J.
,
Haddad
,
D. E.
,
Mazzawy
,
R.
, and
Joslyn
,
H.
,
1979
, “
A Fundamental Criterion for the Application of Rotor Casing Treatment
,”
ASME J. Fluids Eng.
,
101
(
2
), pp.
237
243
.
9.
Heinichen
,
F.
,
Gummer
,
V.
, and
Schiffer
,
H.-P.
,
2011
, “
Numerical Investigation of a Single Circumferential Groove Casing Treatment on Three Different Compressor Rotors
,”
ASME
Paper No. GT2011-45905.
10.
Lu
,
X.
,
Chu
,
W.
,
Zhu
,
J.
, and
Wu
,
Y.
,
2006
, “
Mechanism of the Interaction Between Casing Treatment and Tip Leakage Flow in a Subsonic Axial Compressor
,”
ASME
Paper No. GT2006-90077.
11.
Wilke
,
I.
, and
Kau
,
H.-P.
,
2004
, “
A Numerical Investigation of the Flow Mechanisms in a High Pressure Compressor Front Stage With Axial Slots
,”
ASME J. Turbomach.
,
126
(
3
), pp.
339
349
.
12.
Hembera
,
M.
,
Kau
,
H. P.
, and
Johann
,
E.
,
2008
, “
Simulation of Casing Treatments of a Transonic Compressor Stage
,”
Int. J. Rotating Mach.
,
2008
, p.
657202
.
13.
Lu
,
X.
,
Zhu
,
J.
,
Zhang
,
Y.
, and
Chu
,
W.
,
2009
, “
Numerical Investigations of the Coupled Flow Through a Subsonic Compressor Rotor and Axial Skewed Slot
,”
ASME J. Turbomach.
,
131
(
1
), p.
011001
.
14.
Voges
,
M.
,
Schnell
,
R.
,
Willert
,
C.
,
Mönig
,
R.
,
Müller
,
M.
, and
Zscherp
,
C.
,
2011
, “
Investigation of Blade Tip Interaction With Casing Treatment in a Transonic Compressor—Part I: Particle Image Velocimetry
,”
ASME J. Turbomach.
,
133
(
1
), p.
011007
.
15.
Bailey
,
E. E.
,
1972
, “
Effect of Grooved Casing Treatment on the Flow Range Capability of a Single-Stage Axial-Flow Compressor
,” National Aeronautics and Space Administration, Washington, DC, Technical Report No. NASA TM X-2459.
16.
Kurokawa
,
J.
,
Saha
,
S. L.
,
Matsui
,
J.
, and
Kitahora
,
T.
,
2000
, “
Passive Control of Rotating Stall in a Parallel-Wall Vaneless Diffuser by Radial Grooves
,”
ASME J. Fluids Eng.
,
122
(
1
), pp.
90
96
.
17.
Huang
,
X.
,
Chen
,
H.
, and
Fu
,
S.
,
2008
, “
CFD Investigation on the Circumferential Grooves Casing Treatment of Transonic Compressor
,”
ASME
Paper No. GT2008-51107.
18.
Houghton
,
T.
, and
Day
,
I.
,
2012
, “
Stability Enhancement by Casing Grooves: The Importance of Stall Inception Mechanism and Solidity
,”
ASME J. Turbomach.
,
134
(
2
), p.
021003
.
19.
Xi
,
G.
,
Ma
,
Y.
,
Wu
,
G.
,
Zhang
,
K.
,
Xiao
,
W.
, and
Mou
,
Z.
,
2013
, “
Exploration of a New-Type Grooved Casing Treatment Configuration for a High-Speed Small-Size Centrifugal Compressor
,”
Proc. Inst. Mech. Eng., Part A
,
227
(
4
), pp.
464
478
.
20.
Kim
,
J.-H.
,
Choi
,
K.-J.
, and
Kim
,
K.-Y.
,
2013
, “
Aerodynamic Analysis and Optimization of a Transonic Axial Compressor With Casing Grooves to Improve Operating Stability
,”
Aerosp. Sci. Technol.
,
29
(
1
), pp.
81
91
.
21.
Halawa
,
T.
,
Alqaradawi
,
M.
,
Gadala
,
M. S.
,
Shahin
,
I.
, and
Badr
,
O.
,
2015
, “
Numerical Investigation of Rotating Stall in Centrifugal Compressor With Vaned and Vaneless Diffuser
,”
J. Therm. Sci.
,
24
(
4
), pp.
323
333
.
22.
Halawa
,
T.
,
Gadala
,
M.
,
Alqaradawi
,
M.
, and
Badr
,
O.
,
2014
, “
Numerical Simulation of Stall Development Into Surge and Stall Control Using Air Injection in Centrifugal Compressors
,”
ASME
Paper No. POWER2014-32053.
23.
Halawa
,
T.
,
Gadala
,
M.
,
Alqaradawi
,
M.
, and
Badr
,
O.
,
2014
, “
Numerical Simulation of Using Combined Active and Passive Stall Control Techniques in Centrifugal Compressors
,”
ASME
Paper No. IMECE2014-37983.
24.
Halawa
,
T.
,
Alqaradawi
,
M.
,
Badr
,
O.
, and
Gadala
,
M. S.
,
2014
, “
Numerical Investigation of Steady Air Injection Flow to Control Rotating Stall in Centrifugal Compressors
,”
ASME
Paper No. ESDA2014-20590.
25.
Halawa
,
T.
,
Gadala
,
M. S.
,
Alqaradawi
,
M.
, and
Badr
,
O.
,
2015
, “
Optimization of the Efficiency of Stall Control Using Air Injection for Centrifugal Compressors
,”
ASME J. Eng. Gas Turbines Power
,
137
(
7
), p.
072604
.
26.
McKain
,
T. F.
, and
Holbrook
,
G. J.
,
1997
, “
Coordinates for a High Performance 4: 1 Pressure Ratio Centrifugal Compressor
,” National Aeronautics and Space Administration, Washington, DC, Technical Report No. NASA-CR-204134.
27.
Chen
,
J.-P.
,
Webster
,
R. S.
,
Hathaway
,
M. D.
,
Herrick
,
G. P.
, and
Skoch
,
G. J.
,
2009
, “
High Performance Computing of Compressor Rotating Stall and Stall Control
,”
Integr. Comput.-Aided Eng.
,
16
(
1
), pp.
75
89
.
28.
Skoch
,
G.
,
2005
, “
Experimental Investigation of Diffuser Hub Injection to Improve Centrifugal Compressor Stability
,”
ASME J. Turbomach.
,
127
(
1
), pp.
107
117
.
29.
Skoch
,
G. J.
,
2000
,
Centrifugal Compressor Flow Range Extension Using Diffuser Flow Control
,
NASA Glenn Research Center
,
Cleveland, OH
, p.
17
.
30.
Skoch
,
G. J.
,
2003
, “
Experimental Investigation of Centrifugal Compressor Stabilization Techniques
,”
ASME J. Turbomach.
,
125
(
4
), pp.
704
713
.
31.
Spakovszky
,
Z.
,
2004
, “
Backward Traveling Rotating Stall Waves in Centrifugal Compressors
,”
ASME J. Turbomach.
,
126
(
1
), pp.
1
12
.
32.
Wernet
,
M. P.
,
Bright
,
M. M.
, and
Skoch
,
G. J.
,
2001
, “
An Investigation of Surge in a High-Speed Centrifugal Compressor Using Digital PIV
,”
ASME J. Turbomach.
,
123
(
2
), pp.
418
428
.
33.
ANSYS
,
2011
, “
FLUENT 13.0
,”
ANSYS, Inc.
,
Canonsburg, PA
.
34.
Davis
,
P.
,
Rinehimer
,
A.
, and
Uddin
,
M.
,
2012
, “
A Comparison of RANS-Based Turbulence Modeling for Flow Over a Wall-Mounted Square Cylinder
,”
20th Annual Conference of the CFD Society of Canada
, Canmore, AL, Canada, May 9–12.
35.
Wilcox
,
D. C.
,
1998
,
Turbulence Modeling for CFD
,
DCW Industries
,
La Canada, CA
.
36.
Richardson
,
L. F.
,
1911
, “
The Approximate Arithmetical Solution by Finite Differences of Physical Problems Involving Differential Equations, With an Application to the Stresses in a Masonry Dam
,”
Philos. Trans. R. Soc. London, Ser. A
,
210
(
459–470
), pp.
307
357
.
37.
Skoch
,
G. J.
,
Prahst
,
P.
,
Wernet
,
M.
,
Wood
,
J.
, and
Strazisar
,
A.
,
1997
, “
Laser Anemometer Measurements of the Flow Field in a 4: 1 Pressure Ratio Centrifugal Impeller
,” Army Research Laboratory, Adelphi, MD, Technical Report No. ARL-TR-1448.
38.
Larosiliere
,
L.
,
Skoch
,
G. J.
, and
Prahst
,
P.
,
1997
, “
Aerodynamic Synthesis of a Centrifugal Impeller Using CFD and Measurements
,” National Aeronautics and Space Administration, Washington, DC, Technical Report No. TM-107515.
39.
Skoch
,
G. J.
,
Prahst
,
P.
,
Wernet
,
M.
,
Wood
,
J.
, and
Strazisar
,
A.
,
1997
, “
Laser Anemometer Measurements of the Flow Field in a 4: 1 Pressure Ratio Centrifugal Impeller
,”
ASME
Paper No. 97-GT-342.
40.
Ni
,
R.-H.
, and
Fan
,
G.
,
2009
,
CFD Simulation of a High-Speed Centrifugal Compressor Using Code Leo and Code Wand
,
Aerodynamic Solutions, Inc.
,
Pleasanton, CA
.
You do not currently have access to this content.