Many experiments demonstrate that the bubble relative (slip) velocities in vertical turbulent sheared bubbly flows are significantly lower than those in quiescent infinite fluid. Moreover, vertical bubbly jet experiments performed by Sun and Faeth (1986, “Structure of Turbulent Bubbly Jets-1. Methods and Centerline Properties,” Int. J. Multiphase Flow, 12(1), pp. 99–114) indicate that bubble slip velocities have negative values in the high sheared zone near the injector. The present analysis shows that the phenomenon of the slip velocity inversion is associated with the effect of the turbulent part of the interfacial force. A new formulation of the turbulent contribution of the added mass force is proposed. This formulation is analyzed using the vertical bubbly jet experimental data. The results provide evidence that the turbulent contribution of the added mass force is at the origin of the slip velocity reduction and could explain the appearance of the negative values observed in bubbly jet experiments. As a whole, the turbulent contribution of the added mass force which comprises two terms (a nonlinear turbulent term and a convective acceleration term associated to the drift velocity) opposes the action of the gravity and their effect may be high enough to produce negative slip velocities. Taken separately, the two turbulent terms cannot explain the reversal and the reduction of slip through the entire section in the near injection zone of the bubbly jet. The combined effect of the two turbulent terms makes it possible to reproduce slip velocity profiles as observed in the near injection zone.

References

References
1.
Lance
,
M.
, and
Bataille
,
J.
,
1991
, “
Turbulence in the Liquid Phase of a Uniform Bubbly Air–Water Flow
,”
J. Fluid Mech.
,
222
, pp.
95
118
.
2.
Bolotnov
,
I. A.
,
2013
, “
Influence of Bubbles on the Turbulence Anisotropy
,”
ASME J. Fluids Eng.
,
135
(
5
), p.
051301
.
3.
Zhang
,
H.
,
Yokomine
,
T.
, and
Kunugi
,
T.
,
2015
, “
Turbulence Modulation of the Upward Turbulent Bubbly Flow in Vertical Ducts
,”
Nucl. Eng. Technol.
,
47
(
5
), pp.
513
522
.
4.
Santarelli
,
C.
,
Roussel
,
J.
, and
Fröhlich
,
J.
,
2016
, “
Budget Analysis of the Turbulent Kinetic Energy for Bubbly Flow in a Vertical Channel
,”
Chem. Eng. Sci.
,
141
, pp.
46
62
.
5.
Lance
,
M.
, and
Lopez de Bertodano
,
M.
,
1994
, “
Phase Distribution Phenomena and Wall Effects in Bubbly Two-Phase Flows
,”
Mult. Sci. and Tech.
,
8
(1–4), pp. 69–123.
6.
Colin
,
C.
,
Fabre
,
J.
, and
Kamp
,
A.
,
2012
, “
Turbulent Bubbly Flow in Pipe Under Gravity and Micro-Gravity Conditions
,”
J. Fluid Mech.
,
711
, pp.
469
515
.
7.
Chahed
,
J.
,
Roig
,
V.
, and
Mabernat
,
L.
,
2003
, “
Eulerian-Eulerian Two-Fluid Model for Turbulent Bubbly Flows
,”
Int. J. Multiphase Flow
,
29
(
1
), pp.
23
49
.
8.
Lee
,
S. J.
,
Lahey
,
R. T.
, and
Jones
,
O. C.
, Jr.
,
1989
, “
The Prediction of Two Phase Turbulence and Phase Distribution Phenomena Using k,ε Model
,”
Jpn. J. Multiphase Flow
,
3
(
4
), pp.
335
368
.
9.
Politano
,
M. S.
,
Carrica
,
P. M.
, and
Converti
,
J.
,
2003
, “
A Model for Turbulent Polydisperse Two-Phase Flow in Vertical Channels
,”
Int. J. Multiphase Flow
,
29
(
7
), pp.
1153
1182
.
10.
Frank
,
T.
,
Zwart
,
P. J.
,
Krepper
,
E.
,
Prasser
,
H. M.
, and
Lucas
,
D.
,
2008
, “
Validation of CFD Models for Mono-and Polydisperse Air-Water Two-Phase Flows in Pipes
,”
Nucl. Eng. Des.
,
238
(
3
), pp.
647
659
.
11.
Hosokawa
,
S.
,
Hayashi
,
K.
, and
Tomiyama
,
A.
,
2014
, “
Void Distribution and Bubble Motion in Bubbly Flows in a 4 × 4 Rod Bundle. Part I: Experiments
,”
J. Nucl. Sci. Technol.
,
51
(
2
), pp.
220
230
.
12.
Coste
,
P.
, and
Laviéville
,
J.
,
2015
, “
A Turbulence Model for Large Interfaces in High Reynolds Two-Phase CFD
,”
Nucl. Eng. Des.
,
284
, pp.
162
175
.
13.
Chahed
,
J.
,
Colin
,
C.
, and
Masbernat
,
L.
,
2002
, “
Turbulence and Phase Distribution in Bubbly Pipe Flow Under Micro-Gravity Condition
,”
ASME J. Fluids Eng.
,
124
(
4
), pp.
951
956
.
14.
Drew
,
D. A.
, and
Lahey
,
R. T.
,
1982
, “
Phase Distribution Mechanisms in Turbulent Low-Quality Two-Phase Flow in Circular Pipe
,”
J. Fluid Mech.
,
117
, pp.
91
106
.
15.
Wang
,
S. K.
,
Lee
,
S. J.
,
Jones
,
O. C.
, and
Lahey
,
R. T.
,
1987
, “
3-D Turbulence Structure and Phase Distribution Measurements in Bubbly Two-Phase Flows
,”
Int. J. Multiphase Flow
,
13
(
3
), pp.
327
343
.
16.
Rahmani
,
M. A.
,
Chahed
,
J.
,
Bellakhal
,
G.
, and
Liné
,
A.
,
2010
, “
Gas Dispersion in Airlift Reactors: Contribution of the Turbulent Part of the Added Mass Force
,”
AIChE J.
,
10
, pp.
1
49
.
17.
Sun
,
T. Y.
, and
Faeth
,
G. M.
,
1986
, “
Structure of Turbulent Bubbly Jets-1. Methods and Centerline Properties
,”
Int. J. Multiphase Flow
,
12
(
1
), pp.
99
114
.
18.
Lima Neto
,
I. E.
,
Zhu
,
D. Z.
, and
Rajaratnam
,
N.
,
2008
, “
Bubbly Jets in Stagnant Water
,”
Int. J. Multiphase Flow
,
34
(
12
), pp.
1130
1141
.
19.
Ayed
,
H.
,
Chahed
,
J.
, and
Roig
,
V.
,
2007
, “
Hydrodynamics and Mass Transfer in a Turbulent Buoyant Bubbly Shear Layer
,”
AIChE J.
,
53
(
11
), pp.
2742
2753
.
20.
Simiano
,
M.
,
Lakehal
,
D.
,
Lance
,
M.
, and
Yadigaroglu
,
G.
,
2009
, “
Turbulent Transport Mechanisms in Oscillating Bubble Plumes
,”
J. Fluid Mech.
,
633
, pp.
191
231
.
21.
Young
,
M. A.
,
Carbonell
,
R. G.
, and
Ollis
,
D. F.
,
1991
, “
Airlift Bioreactors: Analysis of Local Two-Phase Hydrodynamics
,”
AIChE J.
,
37
(
3
), pp.
403
425
.
22.
Lopez de Bertodano
,
M.
,
Moraga
,
F. J.
,
Drew
,
D. A.
, and
Lahey
,
R. T.
, Jr
.,
2004
, “
The Modeling of Lift and Dispersion Forces in Two-Fluid Model Simulations of a Bubbly Jet
,”
ASME J. Fluids Eng.
,
126
(
4
), pp.
573
577
.
23.
Brucato
,
A.
,
Grisafi
,
F.
, and
Montante
,
G.
,
1998
, “
Particle Drag Coefficients in Turbulent Fluids
,”
Chem. Eng. Sci.
,
53
(
18
), pp.
3295
3314
.
24.
Bagchi
,
P.
, and
Balachandar
,
S.
,
2003
, “
Effect of Turbulence on the Drag and Lift of a Particle
,”
Phys. Fluids
,
15
(
11
), pp.
3496
3513
.
25.
Adoua
,
R.
,
Legendre
,
D.
, and
Magnaudet
,
J.
,
2009
, “
Reversal of the Lift Force on an Oblate Bubble in a Weakly Viscous Linear Shear Flow
,”
J. Fluid Mech.
,
628
, pp.
23
41
.
26.
Estejab
,
B.
, and
Battaglia
,
F.
,
2016
, “
Assessment of Drag Models for Geldart A Particles in Bubbling Fluidized Beds
,”
ASME J. Fluids Eng.
,
138
(
3
), p.
031105
.
27.
Law
,
D.
,
Battaglia
,
F.
, and
Heindel
,
T. J.
,
2008
, “
Model Validation for Low and High Superficial Gas Velocity Bubble Column Flows
,”
Chem. Eng. Sci.
,
63
(
18
), pp.
4605
4616
.
28.
Maxey
,
M. R.
, and
Riley
,
J. J.
,
1983
, “
Equation of Motion for a Small Rigid Sphere in a Nonuniform Flow
,”
Phys. Fluids
,
26
(
4
), pp.
883
889
.
29.
Gatignol
,
R.
,
1983
, “
The Faxén Formulae for a Rigid Particle in an Unsteady Non-Uniform Stokes Flow
,”
J. Mec. Theor. Appl.
,
1
(
2
), pp.
143
160
.
30.
Magnaudet
,
J.
,
Rivero
,
M.
, and
Fabre
,
J.
,
1995
, “
Accelerated Flows Past a Rigid Sphere or a Spherical Bubble Part 1. Steady Straining Flow
,”
J. Fluid Mech.
,
284
, pp.
97
135
.
31.
Sun
,
T. Y.
,
1985
, “
A Theoretical and Experimental Study of Noncondensible Turbulent Bubbly Jets
,” Ph.D. thesis, Pennsylvania State University, University Park.
32.
Clift
,
R.
,
Grace
,
J. R.
, and
Weber
,
M. E.
,
1978
,
Bubbles, Drops and Particles
,
Academic Press
,
New York
, p.
346
.
33.
Lima Neto
,
I. E.
,
2015
, “
Self-Similarity of Vertical Bubbly Jets
,”
Braz. J. Chem. Eng.
,
32
(
2
), pp.
475
487
.
34.
Roig
,
V.
,
Suzanne
,
C.
, and
Masbernat
,
L.
,
1995
, “
Experimental Investigation of a Turbulent Bubbly Mixing Layer
,”
Int. J. Multiphase Flow
,
24
(
1
), pp.
35
54
.
You do not currently have access to this content.