Synthetic jet actuators are used to produce net axial momentum flow without net mass flux. Through strategic application, such devices can be used for flow control, propulsive thrust, and cooling. A novel application uses a variable-diameter orifice to constrict the exiting flow, and the motion can be synchronized with the pulse of the jet. This device is examined using phase-locked particle image velocimetry (PIV), permitting investigation of the flow fields and momentum flow. When compared to fixed-diameter synthetic jets, the variable-diameter actuator produces a larger vortex ring that lingers nearer the aperture. In addition, the experiments show increased momentum when the aperture is contracted in phase with the pulsing jet, with peak levels more than twice that of a constant-diameter jet.

References

References
1.
Glezer
,
A.
, and
Amitay
,
M.
,
2002
, “
Synthetic Jets
,”
Ann. Rev. Fluid Mech.
,
34
(
1
), pp.
503
529
.
2.
Smith
,
B. L.
, and
Glezer
,
A.
,
1998
, “
The Formation and Evolution of Synthetic Jets
,”
Phys. Fluids
,
10
(
9
), pp.
2281
2297
.
3.
Smith
,
B. L.
, and
Swift
,
G. W.
,
2003
, “
A Comparison Between Synthetic Jets and Continuous Jets
,”
Exp. Fluids
,
34
(
4
), pp.
467
472
.
4.
Yen
,
J.
, and
Ahmed
,
N. A.
,
2012
, “
Parametric Study of Dynamic Stall Flow Field With Synthetic Jet Actuation
,”
ASME J. Fluids Eng.
,
134
(
7
), p.
071106
.
5.
Roos
,
F. W.
,
1998
, “
Synthetic Jet Microblowing for Forebody Flow-Asymmetry Management
,”
AIAA
Paper No. 98-0212.
6.
Arik
,
M.
,
Sharma
,
R.
,
Lustbader
,
J.
, and
He
,
X.
,
2013
, “
Steady and Unsteady Air Impingement Heat Transfer for Electronics Cooling Applications
,”
ASME J. Heat Transfer
,
135
(
11
), p.
111009
.
7.
Dabiri
,
J. O.
, and
Gharib
,
M.
,
2005
, “
Starting Flow Through Nozzles With Temporally Variable Exit Diameter
,”
J. Fluid Mech.
,
538
, pp.
111
136
.
8.
Dabiri
,
J. O.
,
Colin
,
S. P.
, and
Costello
,
J. H.
,
2006
, “
Fast-Swimming Hydromedusae Exploit Velar Kinematics to Form an Optimal Vortex Wake
,”
J. Exp. Biol.
,
209
(
11
), pp.
2025
2033
.
9.
Gharib
,
M.
,
Rambod
,
E.
, and
Shariff
,
K.
,
1998
, “
A Universal Time Scale for Vortex Ring Formation
,”
J. Fluid Mech.
,
570
, pp.
121
140
.
10.
Lawson
,
J. M.
, and
Dawson
,
J. R.
,
2013
, “
The Formation of Turbulent Vortex Rings by Synthetic Jets
,”
Phys. Fluids
,
25
(
10
), p.
105113
.
11.
Shusser
,
M.
,
Rosenfeld
,
M.
,
Dabiri
,
J. O.
, and
Gharib
,
M.
,
2006
, “
Effect of Time-Dependent Piston Velocity Program on Vortex Ring Formation in a Piston/Cylinder Arrangement
,”
Phys. Fluids
,
18
(
3
), p.
033601
.
12.
Rosenfeld
,
M.
,
Katija
,
K.
, and
Dabiri
,
J. O.
,
2009
, “
Circulation Generation and Vortex Ring Formation by Conic Nozzles
,”
ASME J. Fluids Eng.
,
131
(
9
), p.
091204
.
13.
Ruiz
,
L. A.
,
Whittlesey
,
R. W.
, and
Dabiri
,
J. O.
,
2011
, “
Vortex-Enhanced Propulsion
,”
J. Fluid Mech.
,
668
, pp.
5
32
.
14.
Allen
,
J. J.
, and
Naitoh
,
T.
,
2004
, “
Production of Vortex Rings Using a Variable Diameter Orifice
,”
ICTAM 2004
, Warsaw, Poland, Aug. 15–21.
15.
Allen
,
J. J.
, and
Naitoh
,
T.
,
2005
, “
Experimental Study of the Production of Vortex Rings Using a Variable Diameter Orifice
,”
Phys. Fluids
,
17
(
6
), p.
061701
.
16.
Villanueva
,
A.
,
Smith
,
C.
, and
Priya
,
S.
,
2011
, “
A Biomimetic Robotic Jellyfish (Robojelly) Actuated by Shape Memory Alloy Composite Actuators
,”
Bioinspiration Biomimetics
,
6
(
3
), p.
036004
.
17.
Villanueva
,
A.
,
Vlachos
,
P.
, and
Priya
,
S.
,
2014
, “
Flexible Margin Kinematics and Vortex Formation of Aurelia Aurita and Robojelly
,”
PLOS One
,
9
(
6
), p.
e98310
.
18.
Najem
,
J.
,
Sarles
,
S. A.
,
Akle
,
B.
, and
Leo
,
D. J.
,
2012
, “
Biomimetic Jellyfish-inspired Underwater Vehicle Actuated by Ionic Polymer Metal Composite Actuators
,”
Smart Mater. Struct.
,
21
(
9
), p.
094026
.
19.
Nawroth
,
J. C.
,
Lee
,
H.
,
Feinberg
,
A. W.
,
Ripplinger
,
C. M.
,
McCain
,
M. L.
,
Grosberg
,
A.
,
Dabiri
,
J. O.
, and
Parker
,
K. K.
,
2012
, “
A Tissue-Engineered Jellyfish With Biomimetic Propulsion
,”
Nat. Biotechnol.
,
30
(
8
), pp.
792
797
.
20.
Marut
,
K.
,
Stewart
,
C.
,
Michael
,
T.
,
Villanueva
,
A.
, and
Priya
,
S.
,
2013
, “
A Jellyfish-Inspired Jet Propulsion Robot Actuated by an Iris Mechanism
,”
Smart Mater. Struct.
,
22
(
9
), p.
094021
.
21.
Han
,
D.
,
2001
, “
Study of Turbulent Nonpremixed Jet Flames Using Simultaneous Measurements of Velocity and CH Distributions
,” Ph.D. dissertation, Department of Mechanical Engineering, Stanford University, Stanford, CA.
22.
Albright
,
S. O.
, and
Solovitz
,
S. A.
,
2014
, “
Development of a Variable-Diameter Synthetic Jet Actuator
,”
ASME
Paper No. IMECE2014-36936.
23.
Mi
,
J.
,
Kalt
,
P.
,
Nathan
,
G. J.
, and
Wong
,
C. Y.
,
2007
, “
PIV Measurements of a Turbulent Jet Issued From Round Sharp-Edged Plate
,”
Exp. Fluids
,
42
(
4
), pp.
625
637
.
24.
Pope
,
S. B.
,
2000
,
Turbulent Flows
,
Cambridge University Press
,
Cambridge, UK
, pp.
99
101
.
25.
Chojnicki
,
K. N.
,
Clarke
,
A. B.
,
Adrian
,
R. J.
, and
Phillips
,
J. C.
,
2014
, “
The Flow Structure of Jets From Transient Sources and Implications for Modeling Short-Duration Explosive Volcanic Eruptions
,”
Geochem. Geophys. Geosyst.
,
15
(
12
), pp.
4831
4845
.
26.
Holman
,
R.
,
Utturkar
,
Y.
,
Mittal
,
R.
,
Smith
,
B. L.
, and
Cattafesta
,
L.
,
2005
, “
Formation Criterion for Synthetic Jets
,”
AIAA J.
,
43
(
10
), pp.
2110
2116
.
You do not currently have access to this content.