Experimental studies were carried out for investigating changes in flow characteristics with the presence of flexible vegetation in a channel. The study focuses on the effect of introducing downward seepage on velocity profiles, Reynolds shear stress (RSS), and different turbulent length scales in a vegetative channel. The presence of vegetation provides drag and reduces the flow velocity. The turbulence generation mainly comes from the oscillations occurring near the top of the vegetation as is evident from the achievement of maximum Reynolds stress near the top of the vegetation. Application of downward seepage results in a higher velocity zone in the lower vegetation zone and a higher Reynolds stress. Quadrant analysis shows that sweep and ejection contribute most to Reynolds stress. The dominance of sweep event over ejection event is more with the application of downward seepage which means more bed transport. Different turbulent length and time scales increase with increase in downward seepage percentage due to reduction in energy dissipation. The increase in the length scale and time scale with downward seepage infers that higher level of turbulence prevail near the bed with an increased eddy size resulting in higher Reynolds stresses with downward seepage. The universal probability distribution functions (PDFs) of velocity fluctuations, RSS, and conditional RSS of vegetative channel follow Gram Charlier (GC) series based on exponential distribution except that a slight departure of inward and outward interactions of conditional RSS is observed which may be due to weaker events.

References

References
1.
Ghisalberti
,
M.
, and
Nepf
,
H.
,
2006
, “
The Structure of the Shear Layer in Flows Over Rigid and Flexible Canopies
,”
Environ. Fluid Mech.
,
6
(
3
), pp.
277
301
.
2.
Cowan
,
W. L.
,
1956
, “
Estimating Hydraulic Roughness Coefficients
,”
Agric. Eng.
,
37
(
7
), pp.
473
475
.
3.
Tsujimoto
,
T.
,
1999
, “
Fluvial Processes in Streams With Vegetation
,”
J. Hydraul. Res.
,
37
(
6
), pp.
789
803
.
4.
Duan
,
J. G.
,
Barkdoll
,
B.
, and
French
,
R.
,
2006
, “
Lodging Velocity for an Emergent Aquatic Plant in Open Channels
,”
J. Hydraul. Div., Am. Soc. Civ. Eng.
,
132
(
10
), pp.
1015
1020
.
5.
Fisher
,
K.
,
1992
, “
The Hydraulic Roughness of Vegetated Channels
,” Report SR, 305.
6.
Luhar
,
M.
, and
Nepf
,
H. M.
,
2013
, “
From the Blade Scale to the Reach Scale: A Characterization of Aquatic Vegetative Drag
,”
Adv. Water Resour.
,
51
, pp.
305
316
.
7.
Nepf
,
H. M.
,
2012
, “
Flow and Transport in Regions With Aquatic Vegetation
,”
Annu. Rev. Fluid Mech.
,
44
(
1
), pp.
123
142
.
8.
Bai
,
Y.
, and
Duan
,
J. G.
,
2014
, “
Simulating Unsteady Flow and Sediment Transport in Vegetated Channel Network
,”
J. Hydrol.
,
515
, pp.
90
102
.
9.
Kim
,
H. S.
,
Kimura
,
I.
, and
Shimizu
,
Y.
,
2015
, “
Bed Morphological Changes Around a Finite Patch of Vegetation
,”
Earth Surf. Processes Landforms
,
40
(
3
), pp.
375
388
.
10.
Zhang
,
H.
,
Wang
,
Z.
,
Dai
,
L.
, and
Xu
,
W.
,
2015
, “
Influence of Vegetation on Turbulence Characteristics and Reynolds Shear Stress in Partly Vegetated Channel
,”
ASME J. Fluids. Eng.
,
137
(
6
), p.
061201
.
11.
Meijer
,
D. G.
, and
Van Velzen
,
E. H.
,
1999
, “
Prototype-Scale Flume Experiments on Hydraulic Roughness of Submerged Vegetation
,”
28th International IAHR Conference
, Graz.
12.
Stephan
,
U.
, and
Gutknecht
,
D.
,
2002
, “
Hydraulic Resistance of Submerged Flexible Vegetation
,”
J. Hydrol.
,
269
, pp.
27
43
.
13.
Järvelä
,
J.
,
2002
, “
Flow Resistance of Flexible and Stiff Vegetation: A Flume Study With Natural Plants
,”
J. Hydrol.
,
269
(
1–2
), pp.
44
54
.
14.
Righetti
,
M.
, and
Armanini
,
A.
,
2002
, “
Flow Resistance in Open Channel Flows With Sparsely Distributed Bushes
,”
J. Hydrol.
,
269
(
1–2
), pp.
55
64
.
15.
Devi
,
T.
,
Daga
,
R.
,
Mahto
,
S.
, and
Kumar
,
B.
,
2016
, “
Drag and Turbulent Characteristics of Mobile Bed Channel With Mixed Vegetation Densities Under Downward Seepage
,”
ASME J. Fluids Eng.
,
138
(
7
), p.
071104
.
16.
Klopstra
,
D.
,
Barneveld
,
H. J.
,
Van Noortwijk
,
J. M.
, and
Van Velzen
,
E. H.
,
1997
, “
Analytical Model for Hydraulic Roughness of Submerged Vegetation
,”
27th International IAHR Conference
, San Francisco.
17.
Kouwen
,
N.
, and
Unny
,
T. E.
,
1973
, “
Flexible Roughness in Open Channels
,”
J. Hydraul. Div.
,
99
, pp.
713
728
.
18.
Fathi-Maghadam
,
M.
, and
Kouwen
,
N.
,
1997
, “
Non Rigid, Non Submerged, Vegetative Roughness on Floodplains
,”
J. Hydraul. Eng.
,
123
(
1
), pp.
51
57
.
19.
Nepf
,
H. M.
, and
Vivoni
,
E. R.
,
1999
, “
Turbulence Structure in Depth-Limited Vegetated Flow: Transition Between Emergent and Submerged Regimes
,”
28th International IAHR Conference
, Graz.
20.
Nepf
,
H. M.
, and
Vivoni
,
E. R.
,
2000
, “
Flow Structure in Depth-Limited, Vegetated Flow
,”
J. Geophys. Res.
,
105
, pp.
28547
28557
.
21.
Fischer-Antze
,
T.
,
Stoesser
,
T.
,
Bates
,
P.
, and
Olsen
,
N. R. B.
,
2001
, “
3D Numerical Modelling of Open Channel Flow With Submerged Vegetation
,”
J. Hydraul. Res.
,
39
(
3
), pp.
303
310
.
22.
López
,
F.
, and
García
,
M. H.
,
2001
, “
Mean Flow and Turbulence Structure of Open Channel Flow Through Non-Emergent Vegetation
,”
J. Hydraul. Eng.
,
127
(
5
), pp.
392
402
.
23.
Nakagawa
,
H.
,
Tsujimoto
,
T.
, and
Shimizu
,
Y.
,
1992
, “
Sediment Transport in Vegetated Bed Channel
,”
5th International Symposium on River Sedimentation
, Karlsruhe, Germany.
24.
Watanabe
,
Y.
, and
Hoshi
,
K.
,
1996
, “
Influence of Vegetation on Flow Velocity and Suspended Load
,”
International Workshop on Interactive Issues of Flood and Environment in Cold Regions
, Trento, Italy, Oct. 3–6.
25.
Houwing
,
E. J.
,
Tanczos
,
I. C.
,
Kroon
,
A.
, and
De Vries
,
M. B.
,
2000
, “
Interaction of Submerged Vegetation, Hydrodynamics and Turbidity; Analysis of Field and Laboratory Results
,”
INTERCOH Conference
, Delft, The Netherlands.
26.
Teeter
,
A. M.
,
Johnson
,
B. H.
,
Berger
,
C.
,
Stelling
,
G.
,
Scheffner
,
N. W.
,
Garcia
,
M. H.
, and
Parchure
,
T. M.
,
2001
, “
Hydrodynamic and Sediment Transport Modelling With Emphasis on Shallow-Water, Vegetated Areas Lakes, Reservoirs, Estuaries and Lagoons
,”
Hydrobiologia
,
444
(
1
), pp.
1
23
.
27.
Madsen
,
J. D.
,
Chambers
,
P. A.
,
James
,
W. F.
,
Koch
,
E. W.
, and
Westlake
,
D. F.
,
2001
, “
The Interaction Between Water Movement, Sediment Dynamics and Submersed Macrophytes
,”
Hydrobiologia
,
444
(
1
), pp.
71
84
.
28.
Nezu
,
I.
, and
Sanjou
,
M.
,
2008
, “
Turbulence Structure and Coherent Motion in Vegetated Canopy Open Channel Flows
,”
J. Hydro-Environ. Res.
,
2
(
2
), pp.
62
90
.
29.
Nepf
,
H. M.
,
1999
, “
Drag, Turbulence, and Diffusion in Flow Through Emergent Vegetation
,”
Water Resour. Res.
,
35
(
2
), pp.
479
489
.
30.
Finnigan
,
J.
,
2000
, “
Turbulence in Plant Canopies
,”
Annu. Rev. Fluid Mech.
,
32
(
1
), pp.
519
571
.
31.
Finnigan
,
J. J.
,
Shaw
,
R. H.
, and
Patton
,
E. G.
,
2009
, “
Turbulence Structure Above a Vegetation Canopy
,”
J. Fluid Mech.
,
637
, pp.
387
424
.
32.
Nezu
,
I.
, and
Onitsuka
,
K.
,
2001
, “
Turbulent Structure in Partly Vegetated Open Channel Flows With LDA and PIV measurements
,”
J. Hydraul. Res.
,
39
(
6
), pp.
629
642
.
33.
Wilson
,
C. A. M. E.
,
Stoesser
,
T.
,
Bates
,
P. D.
, and
Pinzen
,
A. B.
,
2003
, “
Open Channel Flow Through Different Forms of Submerged Flexible Vegetation
,”
J. Hydraul. Div., Am. Soc. Civ. Eng.
,
129
(
11
), pp.
847
853
.
34.
Ghisalberti
,
M.
, and
Nepf
,
H.
,
2005
, “
Mass Transport in Vegetated Shear Flows
,”
Environ. Fluid Mech.
,
5
(
6
), pp.
527
551
.
35.
Fraser
,
R.
,
Pack
,
C. J.
, and
Santavicca
,
D. A.
,
1986
, “
An LDV System for Length Scale Measurement
,”
Exp. Fluids
,
4
(
3
), pp.
150
152
.
36.
Kantha
,
L. H.
,
2004
, “
Length Scale Equation in Turbulence Models
,”
Nonlinear Processes Geophys.
,
11
(
1
), pp.
83
97
.
37.
Nakagawa
,
H.
, and
Nezu
,
I.
,
1977
, “
Prediction of the Contributions to the Reynolds Stress From Bursting Events in Open Channel Flows
,”
J. Fluid Mech.
,
80
(
1
), pp.
99
128
.
38.
Afzal
,
B.
,
Faruque
,
M. A.
, and
Balachandar
,
R.
,
2009
, “
Effect of Reynolds Number, Near-Wall Perturbation and Turbulence on Smooth Open Channel Flows
,”
J. Hydraul. Res.
,
47
(
1
), pp.
66
81
.
39.
Kampe′ de Fe′riet
,
J.
,
1966
, “
The Gram-Charlier Approximation of the Normal Law and the Statistical Description of Homogenous Turbulent Flow Near Statistical Equilibrium
,” David Taylor Model Basin Report 2013, Report No. DTMB-2013, Naval Ship Research and Development Center, Washington, DC.
40.
Antonia
,
R. A.
, and
Atkinson
,
J. D.
,
1973
, “
High-Order Moments of Reynolds Shear Stress Fluctuations in a Turbulent Boundary Layer
,”
J. Fluid Mech.
,
58
(
3
), pp.
581
593
.
41.
Bose
,
S. K.
, and
Dey
,
S.
,
2010
, “
Universal Probability Distributions of Turbulence in Open Channel Flows
,”
J. Hydraul. Res.
,
48
(
3
), pp.
388
394
.
42.
Tanji
,
K. K.
, and
Kielen
,
N. C.
,
2002
, “
Agricultural Drainage Water Management in Arid and Semi-Arid Areas
,” Food and Agriculture Organization of the United Nations,
Irrigation and Drainage Paper 61
, Rome.
43.
Kinzli
,
K.-D.
,
Martinez
,
M.
,
Oad
,
R.
,
Prior
,
A.
, and
Gensler
,
D.
,
2010
, “
Using an ADCP to Determine Canal Seepage Loss in an Irrigation District
,”
Agric. Water Manage.
,
97
(
6
), pp.
801
810
.
44.
Martin
,
C. A.
, and
Gates
,
T. K.
,
2014
, “
Uncertainty of Canal Seepage Losses Estimated Using Flowing Water Balance With Acoustic Doppler Devices
,”
J. Hydrol.
,
517
, pp.
746
761
.
45.
Richardson
,
J. R.
,
Abt
,
S. R.
, and
Richardson
,
E. V.
,
1985
, “
Inflow Seepage Influence on Straight Alluvial Channels
,”
J. Hydraul. Eng.
,
111
(
8
), pp.
1133
1147
.
46.
Maclean
,
A. G.
,
1991
, “
Open Channel Velocity Profiles Over a Zone of Rapid Infiltration
,”
J. Hydraul. Res.
,
29
(
1
), pp.
15
27
.
47.
Rao
,
A. R.
,
Subrahmanyam
,
V.
,
Thayumanavan
,
S.
, and
Namboodiripad
,
D.
,
1991
, “
Seepage Effects on Sand Bed Channels
,”
J. Irrig. Drain. Eng.
,
120
(
1
), pp.
60
79
.
48.
Chen
,
X.
, and
Chiew
,
Y.-M.
,
2004
, “
Velocity Distribution of Turbulent Open Channel Flow With Bed Suction
,”
J. Hydraul. Eng.
,
130
(
2
), pp.
140
148
.
49.
Deshpande
,
V.
, and
Kumar
,
B.
,
2016
, “
Advent of Sheet Flow in Suction Affected Alluvial Channels
,”
Environ Fluid Mech.
,
16
(
1
), pp.
25
44
.
50.
Devi
,
T. B.
, and
Kumar
,
B.
,
2015
, “
Turbulent Flow Statistics of Vegetative Channel With Seepage
,”
J. Appl. Geophys.
,
123
, pp.
267
276
.
51.
Goring
,
D. G.
, and
Nikora
,
V. I.
,
2002
, “
Despiking Acoustic Doppler Velocimeter Data
,”
J. Hydraul. Eng.
,
128
(
1
), pp.
117
126
.
52.
Dey
,
S.
,
Das
,
R.
,
Gaudio
,
R.
, and
Bose
,
S. K.
,
2012
, “
Turbulence in Mobile Bed Streams for Flat Bed
,”
Acta Geophys.
,
60
(
6
), pp.
1547
1588
.
53.
Jarvela
,
J.
,
2004
, “
Effect of Submerged Flexible Vegetation on Flow Structure and Resistance
,”
J. Hydrol.
,
307
(
1
), pp.
233
241
.
54.
Poggi
,
D.
,
Porporato
,
A.
, and
Ridolfi
,
L.
,
2004
, “
The Effect of Vegetation Density on Canopy Sub-Layer Turbulence
,”
Boundary-Layer Meteorol.
,
111
(
3
), pp.
565
587
.
55.
Liu
,
D.
,
Diplas
,
P.
,
Fairbanks
,
J. D.
, and
Hodges
,
C. C.
,
2008
, “
An Experimental Study of Flow Through Rigid Vegetation
,”
J. Geophys. Res.
,
113
(
F4
), p.
F04015
.
56.
Huai
,
W.
,
Han
,
J.
,
Zeng
,
Y.
,
An
,
X.
, and
Qian
,
Z.
,
2009
, “
Velocity Distribution of Flow With Submerged Flexible Vegetations Based on Mixing-Length Approach
,”
Appl. Math. Mech.
,
30
(
3
), pp.
343
351
.
57.
Carollo
,
F. G.
,
Ferro
,
V.
, and
Termini
,
D.
,
2005
, “
Flow Resistance Law in Channels With Flexible Submerged Vegetation
,”
J. Hydraul. Eng.
,
131
(
7
), pp.
554
564
.
58.
Chen
,
S. C.
,
Kuo
,
Y. M.
, and
Li
,
Y. H.
,
2011
, “
Flow Characteristics Within Different Configurations of Submerged Flexible Vegetation
,”
J. Hydrol.
,
398
(
1
), pp.
124
134
.
59.
Nepf
,
H. M.
,
2012
, “
Hydrodynamics of Vegetated Channels
,”
J. Hydraul. Res.
,
50
(
3
), pp.
262
279
.
60.
Shucksmith
,
J. D.
,
Boxall
,
J. B.
, and
Guymer
,
I.
,
2010
, “
Effects of Emergent and Submerged Natural Vegetation on Longitudinal Mixing in Open Channel Flow
,”
Water Resour. Res.
,
46
(
4
), p.
W04504
.
61.
Dey
,
S.
, and
Nath
,
T. K.
,
2010
, “
Turbulence Characteristics in Flows Subjected to Boundary Injection and Suction
,”
J. Eng. Mech.
,
136
(
7
), pp.
877
888
.
62.
Prandtl
,
L.
,
1904
, “
Über flüssigkeitsbewegung bei sehr kleiner reibung
,” Verhandlungen des III. Internationalen Mathematiker Kongress,
Heidelberg, Germany
, pp.
484
491
.
63.
Tomas
,
S.
,
Eiff
,
O.
, and
Masson
,
V.
,
2011
, “
Experimental Investigation of Turbulent Momentum Transfer in a Neutral Boundary Layer Over a Rough Surface
,”
Boundary-Layer Meteorol.
,
138
(
3
), pp.
385
411
.
64.
Lu
,
S. S.
, and
Wilmarth
,
W. W.
,
1973
, “
Measurements of the Structure of the Reynolds Stress in a Turbulent Boundary Layer
,”
J. Fluid Mech.
,
60
(
3
), pp.
481
511
.
65.
Raupach
,
M. R.
,
1981
, “
Conditional Statistics of Reynolds Shear Stress in Rough-Wall and Smooth-Wall Turbulent Boundary Layers
,”
J. Fluid Mech.
,
108
, pp.
363
382
.
66.
Richardson
,
L. F.
,
1922
,
Weather Prediction by Numerical Process
,
Cambridge University Press
,
New York
.
67.
Pope
,
S. B.
,
2000
,
Turbulent Flows
,
Cambridge University Press
,
New York
.
68.
Monin
,
A. S.
, and
Yaglom
,
A. M.
,
2007
,
Statistical Fluid Mechanics, Volume II: Mechanics of Turbulence
,
Dover Publications
,
New York
.
69.
Venditti
,
J. G.
,
Church
,
M. A.
, and
Bennett
,
S. J.
,
2005
, “
Bed Form Initiation From a Flat Sand Bed
,”
J. Geophys. Res.
,
110
, p.
F01009
.
You do not currently have access to this content.