Acoustics and ligament formation within a self-generating and self-sustaining pulsating three-stream injector are analyzed and discussed due to the importance of breakup and atomization of jets for agricultural, chemical, and energy-production industries. An extensive parametric study was carried out to evaluate the effects of simulation numerics and boundary conditions using various comparative metrics. Numerical considerations and boundary conditions made quite significant differences in some parameters, which stress the importance of using documented and consistent numerical discretization recipes when comparing various flow conditions and geometries. Validation exercises confirmed that correct droplet sizes could be produced computationally, the Sauter mean diameter (SMD) of droplets/ligaments could be quantified, and the trajectory of a droplet intersecting a shock wave could be accurately tracked. Swirl had a minor impact by slightly moving the ligaments away from the nozzle outlet and changing the spray to a hollow cone shape. Often, metrics were synchronized for a given simulation, indicating that a common driving mechanism was responsible for all the global instabilities, namely, liquid bridging and fountain production with shockletlike structures. Interestingly, both computational fluid dynamics (CFD) and the experimental non-Newtonian primary droplet size results, when normalized by distance from the injector, showed an inversely proportional relationship with injector distance. Another important outcome was the ability to apply the models developed to other nozzle geometries, liquid properties, and flow conditions or to other industrial applications.

References

1.
Lefebvre
,
A.
,
1988
,
Atomization and Sprays
,
CRC Press
, Boca Raton, FL.
2.
Kihm
,
K. D.
, and
Chigier
,
N.
,
1991
, “
Effect of Shock Waves on Liquid Atomization of a Two-Dimensional Airblast Atomizer
,”
Atomization Sprays
,
1
(
1
), pp.
113
136
.
3.
Nourgaliev
,
R. R.
,
Liou
,
M.-S.
, and
Theofanous
,
T. G.
,
2008
, “
Numerical Prediction of Interfacial Instabilities: Sharp Interface Method (SIM)
,”
J. Comput. Phys.
,
227
(
8
), pp.
3940
3970
.
4.
Xiao
,
F.
,
Dianat
,
M.
, and
McGuirk
,
J. J.
,
2014
, “
LES of Turbulent Liquid Jet Primary Breakup in Turbulent Coaxial Air Flow
,”
Int. J. Multiphase Flow
,
60
, pp.
103
118
.
5.
Zhao
,
H.
,
Liu
,
H.-F.
,
Xu
,
J.-L.
,
Li
,
W.-F.
, and
Cheng
,
W.
,
2012
, “
Breakup and Atomization of a Round Coal Water Slurry Jet by an Annular Air Jet
,”
Chem. Eng. Sci.
,
78
, pp.
63
74
.
6.
Kourmatzis
,
A.
, and
Masri
,
A.
,
2015
, “
Air-Assisted Atomization of Liquid Jets in Varying Levels of Turbulence
,”
J. Fluid Mech.
,
764
, pp.
95
132
.
7.
Liu
,
H.-F.
,
Gong
,
X.
,
Li
,
W.-F.
,
Wang
,
F.-C.
, and
Yu
,
Z.-H.
,
2006
, “
Prediction of Droplet Size Distribution in Sprays of Prefilming Air-Blast Atomizers
,”
Chem. Eng. Sci.
,
61
(
6
), pp.
1741
1747
.
8.
Senecal
,
P. K.
,
Schmidt
,
D. P.
,
Nouar
,
I.
,
Rutland
,
C. J.
,
Reitz
,
R. D.
, and
Corradini
,
M. L.
,
1999
, “
Modeling High-Speed Viscous Liquid Sheet Atomization
,”
Int. J. Multiphase Flow
,
25
(
6–7
), pp.
1073
1097
.
9.
Tian
,
X.-S.
,
Zhao
,
H.
,
Liu
,
H.-F.
,
Li
,
W.-F.
, and
Xu
,
J.-L.
,
2015
, “
Three-Dimensional Large Eddy Simulation of Round Liquid Jet Primary Breakup in Coaxial Gas Flow Using the VOF Method
,”
Fuel Process. Technol.
,
131
, pp.
396
402
.
10.
Strasser
,
W.
,
2011
, “
Towards the Optimization of a Pulsatile Three-Stream Coaxial Airblast Injector
,”
Int. J. Multiphase Flow
,
37
(
7
), pp.
831
844
.
11.
Strogatz
,
S. H.
,
2014
,
Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering
,
Westview Press
, Boulder, CO.
12.
Beheshti
,
N.
, and
McIntosh
,
A. C.
,
2007
, “
The Bombardier Beetle and Its Use of a Pressure Relief Valve System to Deliver a Periodic Pulsed Spray
,”
Bioinspiration Biomimetics
,
2
(
4
), pp.
57
64
.
13.
Trujillo
,
F. J.
, and
Knoerzer
,
K.
,
2011
, “
A Computational Modeling Approach of the Jet-Like Acoustic Streaming and Heat Generation Induced by Low Frequency High Power Ultrasonic Horn Reactors
,”
Ultrason. Sonochem.
,
18
(
6
), pp.
1263
1273
.
14.
Lopes
,
R. J. G.
,
de Sousa
,
V. S. L.
, and
Quinta-Ferreira
,
R. M.
,
2011
, “
CFD and Experimental Studies of Reactive Pulsing Flow in Environmentally-Based Trickle-Bed Reactors
,”
Chem. Eng. Sci.
,
66
(
14
), pp.
3280
3290
.
15.
Pakhomov
,
M.
, and
Terekhov
,
V.
,
2015
, “
Numerical Study of Fluid Flow and Heat Transfer Characteristics in an Intermittent Turbulent Impinging Round Jet
,”
Int. J. Therm. Sci.
,
87
, pp.
85
93
.
16.
Chigier
,
N.
, and
Farago
,
Z.
,
1992
, “
Morphological Classification of Disintegration of Round Liquid Jets in a Coaxial Air Stream
,”
Atomization Sprays
,
2
(
2
), pp.
137
153
.
17.
Gatski
,
T. B.
, and
Bonnet
,
J.-P.
,
2013
,
Compressibility, Turbulence and High Speed Flow
,
Academic Press
, San Diego, CA.
18.
Sen
,
A. K.
,
Darabi
,
J.
, and
Knapp
,
D. R.
,
2011
, “
Analysis of Droplet Generation in Electrospray Using a Carbon Fiber Based Microfluidic Emitter
,”
ASME J. Fluids Eng.
,
133
(
7
), p.
071301
.
19.
Ishii
,
E.
,
Ishikawa
,
M.
,
Sukegawa
,
Y.
, and
Yamada
,
H.
,
2011
, “
Secondary-Drop-Breakup Simulation Integrated With Fuel-Breakup Simulation Near Injector Outlet
,”
ASME J. Fluids Eng.
,
133
(
8
), p.
081302
.
20.
Ali
,
M.
,
Umemura
,
A.
, and
Islam
,
M. Q.
,
2012
, “
A Numerical Investigation on Dynamics and Breakup of Liquid Sheet
,”
ASME J. Fluids Eng.
,
134
(
10
), p.
101303
.
21.
Farvardin
,
E.
, and
Dolatabadi
,
A.
,
2013
, “
Numerical Simulation of the Breakup of Elliptical Liquid Jet in Still Air
,”
ASME J. Fluids Eng.
,
135
(
7
), p.
071302
.
22.
Wahba
,
E. M.
,
Gadalla
,
M. A.
,
Abueidda
,
D.
,
Dalaq
,
A.
,
Hafiz
,
H.
,
Elawadi
,
K.
, and
Issa
,
R.
,
2014
, “
On the Performance of Air-Lift Pumps: From Analytical Models to Large Eddy Simulation
,”
ASME J. Fluids Eng.
,
136
(
11
), p.
111301
.
23.
Ibrahim
,
R. A.
,
2015
, “
Recent Advances in Physics of Fluid Parametric Sloshing and Related Problems
,”
ASME J. Fluids Eng.
,
137
(
9
), p.
090801
.
24.
Strasser
,
W.
, and
Wonders
,
A.
,
2012
, “
Hydrokinetic Optimization of Commercial Scale Slurry Bubble Column Reactor
,”
AICHE J.
,
58
(
3
), pp.
946
956
.
25.
Lian
,
C.
, and
Merkle
,
C. L.
,
2011
, “
Contrast Between Steady and Time-Averaged Unsteady Combustion Simulations
,”
Comput. Fluids
,
44
(
1
), pp.
328
338
.
26.
Deshpande
,
S. S.
,
Anumolu
,
L.
, and
Trujillo
,
M. F.
,
2012
, “
Evaluating the Performance of the Two-Phase Flow Solver InterFoam
,”
Comput. Sci. Discovery
,
5
(
1
), p.
014016
.
27.
Liovic
,
P.
, and
Lakehal
,
D.
,
2012
, “
Subgrid-Scale Modelling of Surface Tension Within Interface Tracking-Based Large Eddy and Interface Simulation of 3D interfacial flows
,”
Comput. Fluids
,
63
, pp.
27
46
.
28.
Strasser
,
W.
,
2008
, “
Discrete Particle Study of Turbulence Coupling in a Confined Jet Gas–Liquid Separator
,”
ASME J. Fluids Eng.
,
130
(
1
), p.
011101
.
29.
Brackbill
,
J.
,
Kothe
,
D. B.
, and
Zemach
,
C.
,
1992
, “
A Continuum Method for Modeling Surface Tension
,”
J. Comput. Phys.
,
100
(
2
), pp.
335
354
.
30.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
31.
Shih
,
T.-H.
,
Liou
,
W.
,
Shabbir
,
A.
,
Yang
,
Z.
, and
Zhu
,
J.
,
1994
, “
A New k-Epsilon Eddy Viscosity Model for High Reynolds Number Turbulent Flows: Model Development and Validation
,”
Report No. 19950005029
.
32.
ANSYS
,
2013
, “
Solver Documentation
,” ANSYS, Inc., Canonsburg, PA.
33.
Hänsch
,
S.
,
Lucas
,
D.
,
Höhne
,
T.
,
Krepper
,
E.
, and
Montoya
,
G.
,
2013
, “
Comparative Simulations of Free Surface Flows Using VOF-Methods and a New Approach for Multi-Scale Interfacial Structures
,”
ASME
Paper No. FEDSM2013-16104.
34.
Egorov
,
Y.
,
2004
, “
Contact Condensation in Stratified Steam-Water Flow
,” Validation of CFD Codes With PTS-Relevant Test Cases, EVOL-ECORA D 07, Contract No. FIKS-CT-2001-00154.
35.
Deendarlianto
,
A.
,
Höhne
,
T.
,
Apanasevich
,
P.
,
Lucas
,
D.
,
Vallée
,
C.
, and
Beyer
,
M.
,
2012
, “
Application of a New Drag Coefficient Model at CFD-Simulations on Free Surface Flows Relevant for the Nuclear Reactor Safety Analysis
,”
Ann. Nucl. Energy
,
39
(
1
), pp.
70
82
.
36.
Dhakal
,
T. P.
,
Walters
,
D. K.
, and
Strasser
,
W.
,
2014
, “
Numerical Study of Gas-Cyclone Airflow: An Investigation of Turbulence Modelling Approaches
,”
Int. J. Comput. Fluid Dyn.
,
28
(
1–2
), pp.
1
15
.
37.
Strasser
,
W.
,
2009
, “
Cyclone-Ejector Coupling and Optimisation
,”
Prog. Comput. Fluid Dyn. Int. J.
,
10
(
1
), pp.
19
31
.
38.
Dhakal
,
T. P.
, and
Walters
,
D. K.
,
2011
, “
A Three-Equation Variant of the SST k–ω Model Sensitized to Rotation and Curvature Effects
,”
ASME J. Fluids Eng.
,
133
(
11
), p.
111201
.
39.
Launder
,
B.
,
Reece
,
G. J.
, and
Rodi
,
W.
,
1975
, “
Progress in the Development of a Reynolds-Stress Turbulence Closure
,”
J. Fluid Mech.
,
68
(
3
), pp.
537
566
.
40.
Li
,
H.
, and
Vasquez
,
S. A.
,
2012
, “
Numerical Simulation of Steady and Unsteady Compressible Multiphase Flows
,”
ASME
Paper No. IMECE2012-87928.
41.
Baharanchi
,
A. A.
,
Darus
,
A. N.
,
Ansari
,
M.
, and
Baharanchi
,
E. A.
,
2012
, “
An Optimum Method of Capturing Interface and a Threshold Weber Number for Inclusion of Surface Tension Force in Simulation of Nozzle Internal Flow in Pressure Swirl Atomizers
,”
ASME
Paper No. IMECE2012-87128.
42.
Menard
,
T.
,
Tanguy
,
S.
, and
Berlemont
,
A.
,
2007
, “
Coupling Level Set/VOF/Ghost Fluid Methods: Validation and Application to 3D Simulation of the Primary Break-Up of a Liquid Jet
,”
Int. J. Multiphase Flow
,
33
(
5
), pp.
510
524
.
43.
Anumolu
,
L.
, and
Trujillo
,
M. F.
,
2013
, “
Gradient Augmented Reinitialization Scheme for the Level Set Method
,”
Int. J. Numer. Methods Fluids
,
73
(
12
), pp.
1011
1041
.
44.
Youngs
,
D. L.
,
1982
, “
Time-Dependent Multi-Material Flow With Large Fluid Distortion
,”
Numer. Methods Fluid Dyn.
,
24
, pp.
273
285
.
45.
Cummins
,
S. J.
,
Francois
,
M. M.
, and
Kothe
,
D. B.
,
2005
, “
Estimating Curvature From Volume Fractions
,”
Comput. Struct.
,
83
(
6
), pp.
425
434
.
46.
Rider
,
W. J.
, and
Kothe
,
D. B.
,
1998
, “
Reconstructing Volume Tracking
,”
J. Comput. Phys.
,
141
(
2
), pp.
112
152
.
47.
Gueyffier
,
D.
,
Li
,
J.
,
Nadim
,
A.
,
Scardovelli
,
R.
, and
Zaleski
,
S.
,
1999
, “
Volume-of-Fluid Interface Tracking With Smoothed Surface Stress Methods for Three-Dimensional Flows
,”
J. Comput. Phys.
,
152
(
2
), pp.
423
456
.
48.
Liovic
,
P.
,
2014
, “
Towards 3D Volume-of-Fluid Methods Featuring Subgrid-Scale Capturing of Interface Curvature
,”
ASME
Paper No. FEDSM2014-21968.
49.
Liovic
,
P.
, and
Lakehal
,
D.
,
2007
, “
Interface-Turbulence Interactions in Large-Scale Bubbling Processes
,”
Int. J. Heat Fluid Flow
,
28
(
1
), pp.
127
144
.
50.
Liovic
,
P.
, and
Lakehal
,
D.
,
2007
, “
Multi-Physics Treatment in the Vicinity of Arbitrarily Deformable Gas–Liquid Interfaces
,”
J. Comput. Phys.
,
222
(
2
), pp.
504
535
.
51.
Vallee
,
C.
,
Hoehne
,
T.
,
Prasser
,
H.-M.
, and
Suehnel
,
T.
,
2008
, “
Experimental Investigation and CFD Simulation of Horizontal Stratified Two-Phase Flow Phenomena
,”
Nucl. Eng. Des.
,
238
(
3
), pp.
637
646
.
52.
Navarro-Martinez
,
S.
,
2014
, “
Large Eddy Simulation of Spray Atomization With a Probability Density Function Method
,”
Int. J. Multiphase Flow
,
63
, pp.
11
22
.
53.
Banerjee
,
R.
,
2013
, “
Numerical Investigation of Evaporation of a Single Ethanol/Iso-Octane Droplet
,”
Fuel
,
107
, pp.
724
739
.
54.
Harvie
,
D. J. E.
,
Davidson
,
M. R.
, and
Rudman
,
M.
,
2006
, “
An Analysis of Parasitic Current Generation in Volume of Fluid Simulations
,”
Appl. Math. Modell.
,
30
(
10
), pp.
1056
1066
.
55.
Strasser
,
W.
,
2007
, “
CFD Investigation of Gear Pump Mixing Using Deforming/Agglomerating Mesh
,”
ASME J. Fluids Eng.
,
129
(
4
), pp.
476
484
.
56.
Ng
,
C.-L.
, and
Sallam
,
K.
,
2011
, “
Simulation of Laminar Liquid Jets in Gaseous Crossflow Before the Onset of Primary Breakup
,”
ASME
Paper No. IMECE2011-65338.
57.
Barth
,
T. J.
, and
Jespersen
,
D. C.
,
1989
, “
The Design and Application of Upwind Schemes on Unstructured Meshes
,”
Paper No. 89-0366
.
58.
Kim
,
S.-E.
,
Makarov
,
B.
, and
Caraeni
,
D.
,
2003
, “
A Multi-Dimensional Linear Reconstruction Scheme for Arbitrary Unstructured Grids
,”
AIAA
Paper No. 3990.
59.
Poe
,
N. M. W.
, and
Walters
,
D. K.
,
2012
, “
A Nonlocal Convective Flux Limiter for Upwind-Biased Finite Volume Simulations
,”
Int. J. Numer. Methods Fluids
,
70
(
9
), pp.
1103
1117
.
60.
Menter
,
F.
,
2012
, “
Best Practice: Scale-Resolving Simulations in ANSYS CFD
,” ANSYS Documentation, Canonsburg, PA.
61.
Katz
,
A.
, and
Sankaran
,
V.
,
2011
, “
Mesh Quality Effects on the Accuracy of CFD Solutions on Unstructured Meshes
,”
J. Comput. Phys.
,
230
(
20
), pp.
7670
7686
.
62.
Cotton
,
M.
,
2007
, “
Resonant Responses in Periodic Turbulent Flows: Computations Using a k–∊ Eddy Viscosity Model
,”
J. Hydraul. Res.
,
45
(
1
), pp.
54
61
.
63.
Tian
,
X.-S.
,
Zhao
,
H.
,
Liu
,
H.-F.
,
Li
,
W.-F.
, and
Xu
,
J.-L.
,
2014
, “
Effect of Central Tube Thickness on Wave Frequency of Coaxial Liquid Jet
,”
Fuel Process. Technol.
,
119
, pp.
190
197
.
64.
Tavangar
,
S.
,
Hashemabadi
,
S. H.
, and
Saberimoghadam
,
A.
,
2015
, “
CFD Simulation for Secondary Breakup of Coal-Water Slurry Drops Using OpenFOAM
,”
Fuel Process. Technol.
,
132
, pp.
153
163
.
65.
Gritskevich
,
M. S.
,
Garbaruk
,
A. V.
,
Frank
,
T.
, and
Menter
,
F. R.
,
2014
, “
Investigation of the Thermal Mixing in a T-Junction Flow With Different SRS Approaches
,”
Nucl. Eng. Des.
,
279
, pp.
83
90
.
66.
Aliseda
,
A.
,
Hopfinger
,
E. J.
,
Lasheras
,
J. C.
,
Kremer
,
D. M.
,
Berchielli
,
A.
, and
Connolly
,
E. K.
,
2008
, “
Atomization of Viscous and Non-Newtonian Liquids by a Coaxial, High-Speed Gas Jet. Experiments and Droplet Size Modeling
,”
Int. J. Multiphase Flow
,
34
(
2
), pp.
161
175
.
67.
Mansour
,
A.
, and
Chigier
,
N.
,
1995
, “
Air-Blast Atomization of Non-Newtonian Liquids
,”
J. Non-Newtonian Fluid Mech.
,
58
(
2
), pp.
161
194
.
68.
Tsai
,
S. C.
,
Ghazimorad
,
K.
, and
Viers
,
B.
,
1991
, “
Airblast Atomization of Micronized Coal Slurries Using a Twin-Fluid Jet Atomizer
,”
Fuel
,
70
(
4
), pp.
483
490
.
69.
Chauvin
,
A.
,
Jourdan
,
G.
,
Daniel
,
E.
,
Houas
,
L.
, and
Tosello
,
R.
,
2011
, “
Experimental Investigation of the Propagation of a Planar Shock Wave Through a Two-Phase Gas–Liquid Medium
,”
Phys. Fluids
,
23
(
11
), p.
113301
.
70.
Gelfand
,
B. E.
,
1996
, “
Droplet Breakup Phenomena in Flows With Velocity Lag
,”
Prog. Energy Combust. Sci.
,
22
(
3
), pp.
201
265
.
71.
Hsiang
,
L. P.
, and
Faeth
,
G. M.
,
1992
, “
Near-Limit Drop Deformation and Secondary Breakup
,”
Int. J. Multiphase Flow
,
18
(
5
), pp.
635
652
.
72.
Pfahl
,
U.
,
Fieweger
,
K.
,
Adomeit
,
G.
, and
Gelfand
,
B.
,
1996
, “
Shock-Tube Investigations of Atomization, Evaporation, and Ignition of n-Decane and ct-Methylnaphthalene Droplets
,”
20th Meeting Symposium on Shock Waves
, pp.
1027
1032
.
73.
Ranger
,
A. A.
, and
Nicholls
,
J. A.
,
1969
, “
Aerodynamic Shattering of Liquid Drops
,”
AIAA J.
,
7
(
2
), pp.
285
290
.
74.
Ranger
,
A. A.
, and
Nicholls
,
J. A.
,
1972
, “
Atomization of Liquid Droplets in a Convective Gas Stream
,”
Int. J. Heat Mass Transfer
,
15
(
6
), pp.
1203
1211
.
75.
Pirozzoli
,
S.
, and
Grasso
,
F.
,
2004
, “
Direct Numerical Simulations of Isotropic Compressible Turbulence: Influence of Compressibility on Dynamics and Structures
,”
Phys. Fluids
,
16
(
12
), pp.
4386
4407
.
76.
Freund
,
J. B.
,
Lele
,
S. K.
, and
Moin
,
P.
,
2000
, “
Compressibility Effects in a Turbulent Annular Mixing Layer—Part 1: Turbulence and Growth Rate
,”
J. Fluid Mech.
,
421
, pp.
229
267
.
77.
Batley
,
G. A.
,
McIntosh
,
A. C.
, and
Brindley
,
J.
,
1996
, “
Baroclinic Distortion of Laminar Flames
,”
Proc. R. Soc. A
,
452
(
1945
), pp.
199
221
.
78.
Olson
,
B. J.
, and
Cook
,
A. W.
,
2007
, “
Rayleigh–Taylor Shock Waves
,”
Phys. Fluids
,
19
(
12
), p.
128108
.
79.
Strasser
,
W.
, and
Chamoun
,
G.
,
2014
, “
Wall Temperature Considerations in a Two-Stage Swirl Non-Premixed Furnace
,”
Prog. Comput. Fluid Dyn., Int. J.
,
14
(
6
), pp.
386
397
.
80.
Vanierschot
,
M.
, and
Van den Buick
,
E.
,
2008
, “
The Influence of Swirl on the Reattachment Length in an Abrupt Axisymmetric Expansion
,”
Int. J. Heat Fluid Flow
,
29
(
1
), pp.
75
82
.
You do not currently have access to this content.