Although coaxial airblast primary atomization has been studied for decades, relatively little attention has been given to three-stream designs; this is especially true for transonic self-pulsating injectors. Herein, the effects of nozzle geometry, grid resolution, modulation, and gas flow rate on the acoustics and spray character within an industrial scale system were investigated computationally using axisymmetric (AS) and three-dimensional (3D) models. Metrics included stream pressure pulsations, spray lift-off, spray angle, and primary droplet length scale, along with the spectral alignment among these parameters. Strong interactions existed between geometry and inner gas (IG) feed rate. Additionally, inner nozzle retraction and outer stream meeting angle were intimately coupled. Particular attention was given to develop correlations for various metrics versus retraction; one such example is that injector flow capacity was found to be linearly proportional to retraction. Higher IG flows were found to widen sprays, bringing the spray in closer to the nozzle face, and reducing droplet length scales. Substantial forced modulation of the IG at its dominant tone did not strongly affect many metrics. Incompressible 3D results were similar to some of the AS results, which affirmed the predictive power by running AS simulations as surrogates. Lastly, normalized droplet size versus normalized distance from the injector followed a strikingly similar trend as that found from prior two-fluid air-slurry calibration work.

References

References
1.
Bagué
,
A.
,
Fuster
,
D.
,
Popinet
,
S.
,
Scardovelli
,
R.
, and
Zaleski
,
S.
,
2010
, “
Instability Growth Rate of Two-Phase Mixing Layers From a Linear Eigenvalue Problem and an Initial-Value Problem
,”
Phys. Fluids
(
1994
-present),
22
(
9
), p.
092104
.
2.
Boeck
,
T.
,
Li
,
J.
,
López-Pagés
,
E.
,
Yecko
,
P.
, and
Zaleski
,
S.
,
2007
, “
Ligament Formation in Sheared Liquid–Gas Layers
,”
Theor. Comput. Fluid Dyn.
,
21
(
1
), pp.
59
76
.
3.
Chesnel
,
J.
,
Menard
,
T.
,
Reveillon
,
J.
, and
Demoulin
,
F.-X.
,
2011
, “
Subgrid Analysis of Liquid Jet Atomization
,”
Atom. Sprays
,
21
(
1
), pp.
41
67
.
4.
Dumouchel
,
C.
,
2008
, “
On the Experimental Investigation on Primary Atomization of Liquid Streams
,”
Exp. Fluids
,
45
(
3
), pp.
371
422
.
5.
Li
,
G.
,
Lian
,
Y.
, and
Sussman
,
M.
, “
Simulations of Gas-Liquid Two-Phase Jet Flows Using the Moment of Fluid Method
,”
ASME
Paper No. FEDSM2013-16366, p.
V01CT17A014
.
6.
Lienemann
,
H.
,
Shrimpton
,
J.
, and
Fernandes
,
E.
,
2007
, “
A Study on the Aerodynamic Instability of Attenuating Liquid Sheets
,”
Exp. Fluids
,
42
(
2
), pp.
241
258
.
7.
Menard
,
T.
,
Tanguy
,
S.
, and
Berlemont
,
A.
,
2007
, “
Coupling Level Set/VOF/Ghost Fluid Methods: Validation and Application to 3D Simulation of the Primary Break-Up of a Liquid Jet
,”
Int. J. Multiphase Flow
,
33
(
5
), pp.
510
524
.
8.
Navarro-Martinez
,
S.
,
2014
, “
Large Eddy Simulation of Spray Atomization With a Probability Density Function Method
,”
Int. J. Multiphase Flow
,
63
, pp.
11
22
.
9.
Senecal
,
P. K.
,
Schmidt
,
D. P.
,
Nouar
,
I.
,
Rutland
,
C. J.
,
Reitz
,
R. D.
, and
Corradini
,
M. L.
,
1999
, “
Modeling High-Speed Viscous Liquid Sheet Atomization
,”
Int. J. Multiphase Flow
,
25
(
6–7
), pp.
1073
1097
.
10.
Shinjo
,
J.
, and
Umemura
,
A.
,
2010
, “
Simulation of Liquid Jet Primary Breakup: Dynamics of Ligament and Droplet Formation
,”
Int. J. Multiphase Flow
,
36
(
7
), pp.
513
532
.
11.
Wang
,
L.
,
Ye
,
W.
, and
Li
,
Y.
,
2010
, “
Combined Effect of the Density and Velocity Gradients in the Combination of Kelvin–Helmholtz and Rayleigh–Taylor Instabilities
,”
Phys. Plasmas (1994-present)
,
17
(
4
), p.
042103
.
12.
Xiao
,
F.
,
Dianat
,
M.
, and
McGuirk
,
J. J.
,
2014
, “
LES of Turbulent Liquid Jet Primary Breakup in Turbulent Coaxial Air Flow
,”
Int. J. Multiphase Flow
,
60
, pp.
103
118
.
13.
Fuster
,
D.
,
Matas
,
J. P.
,
Marty
,
S.
,
Popinet
,
S.
,
Hoepffner
,
J.
,
Cartellier
,
A.
, and
Zaleski
,
S.
,
2013
, “
Instability Regimes in the Primary Breakup Region of Planar Coflowing Sheets
,”
J. Fluid Mech.
,
736
, pp.
150
176
.
14.
Kim
,
L. D.
,
Heister
,
S. D.
, and
Collicott
,
S. H.
,
2005
, “
Three-Dimensional Flow Simulations in the Recessed Region of a Coaxial Injector
,”
J. Propul. Power
,
21
(
4
), pp.
728
742
.
15.
Park
,
B.
, and
Lee
,
J.
,
1997
, “
Flow Characteristics and Influence of Shock Wave Interactions on Drop Size in Twin-Fluid Atomizers
,”
International Conference on Liquid Atomization and Spray Systems (ICLASS)
, Seoul, South Korea.
16.
Beheshti
,
N.
, and
McIntosh
,
A. C.
,
2007
, “
The Bombardier Beetle and Its Use of a Pressure Relief Valve System to Deliver a Periodic Pulsed Spray
,”
Bioinspiration Biomimetics
,
2
(
4
), pp.
57
64
.
17.
Trujillo
,
F. J.
, and
Knoerzer
,
K.
,
2011
, “
A Computational Modeling Approach of the Jet-Like Acoustic Streaming and Heat Generation Induced by Low Frequency High Power Ultrasonic Horn Reactors
,”
Ultrason. Sonochem.
,
18
(
6
), pp.
1263
1273
.
18.
Roy
,
G.
,
2005
,
Combustion Processes in Propulsion: Control, Noise, and Pulse Detonation
,
Butterworth-Heinemann
, Waltham, MA.
19.
Chigier
,
N.
, and
Farago
,
Z.
,
1992
, “
Morphological Classification of Disintegration of Round Liquid Jets in a Coaxial Air Stream
,”
Atom. Sprays
,
2
(
2
), pp.
137
153
.
20.
Srinivasan
,
V.
,
Salazar
,
A. J.
, and
Saito
,
K.
,
2011
, “
Modeling the Disintegration of Modulated Liquid Jets Using Volume-of-Fluid (VOF) Methodology
,”
Appl. Math. Modell.
,
35
(
8
), pp.
3710
3730
.
21.
Strasser
,
W.
, and
Battaglia
,
F.
,
2015
, “
Identification of Pulsation Mechanism in a Transonic Three-Stream Airblast Injector
,”
ASME J. Fluids Eng.
, (accepted).
22.
Sen
,
A. K.
,
Darabi
,
J.
, and
Knapp
,
D. R.
,
2011
, “
Analysis of Droplet Generation in Electrospray Using a Carbon Fiber Based Microfluidic Emitter
,”
ASME J. Fluids Eng.
,
133
(
7
), p.
071301
.
23.
Ishii
,
E.
,
Ishikawa
,
M.
,
Sukegawa
,
Y.
, and
Yamada
,
H.
,
2011
, “
Secondary-Drop-Breakup Simulation Integrated With Fuel-Breakup Simulation Near Injector Outlet
,”
ASME J. Fluids Eng.
,
133
(
8
), p.
081302
.
24.
Ali
,
M.
,
Umemura
,
A.
, and
Islam
,
M. Q.
,
2012
, “
A Numerical Investigation on Dynamics and Breakup of Liquid Sheet
,”
ASME J. Fluids Eng.
,
134
(
10
), p.
101303
.
25.
Farvardin
,
E.
, and
Dolatabadi
,
A.
,
2013
, “
Numerical Simulation of the Breakupof Elliptical Liquid Jet in Still Air
,”
ASME J. Fluids Eng.
,
135
(
7
), p.
071302
.
26.
Wahba
,
E. M.
,
Gadalla
,
M. A.
,
Abueidda
,
D.
,
Dalaq
,
A.
,
Hafiz
,
H.
,
Elawadi
,
K.
, and
Issa
,
R.
,
2014
, “
On the Performance of Air-Lift Pumps: From Analytical Models to Large Eddy Simulation
,”
ASME J. Fluids Eng.
,
136
(
11
), p.
111301
.
27.
Ibrahim
,
R. A.
,
2015
, “
Recent Advances in Physics of Fluid Parametric Sloshing and Related Problems
,”
ASME J. Fluids Eng.
,
137
(
9
), p.
090801
.
28.
Strasser
,
W.
,
2011
, “
Towards the Optimization of a Pulsatile Three-Stream Coaxial Airblast Injector
,”
Int. J. Multiphase Flow
,
37
(
7
), pp.
831
844
.
29.
Strasser
,
W.
, and
Battaglia
,
F.
,
2015
, “
Pulsatile Primary Slurry Atomization: Effects of Viscosity, Circumferential Domain, and Annular Slurry Thickness
,”
ASME
Paper No. IMECE2015-53026.
30.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
31.
Strasser
,
W.
,
2008
, “
Discrete Particle Study of Turbulence Coupling in a Confined Jet Gas-Liquid Separator
,”
ASME J. Fluids Eng.
,
130
(
1
), p. 011101.
32.
Youngs
,
D. L.
,
1982
, “
Time-Dependent Multi-Material Flow With Large Fluid Distortion
,”
Numer. Methods Fluid Dyn.
,
24
, pp.
273
285
.
33.
Katz
,
A.
, and
Sankaran
,
V.
,
2011
, “
Mesh Quality Effects on the Accuracy of CFD Solutions on Unstructured Meshes
,”
J. Comput. Phys.
,
230
(
20
), pp.
7670
7686
.
34.
Strasser
,
W.
,
2007
, “
CFD Investigation of Gear Pump Mixing Using Deforming/Agglomerating Mesh
,”
ASME J. Fluids Eng.
,
129
(
4
), pp.
476
484
.
35.
Tian
,
X.-S.
,
Zhao
,
H.
,
Liu
,
H.-F.
,
Li
,
W.-F.
, and
Xu
,
J.-L.
,
2014
, “
Effect of Central Tube Thickness on Wave Frequency of Coaxial Liquid Jet
,”
Fuel Process. Technol.
,
119
, pp.
190
197
.
36.
Zhao
,
H.
,
Liu
,
H.-F.
,
Xu
,
J.-L.
,
Li
,
W.-F.
, and
Cheng
,
W.
,
2012
, “
Breakup and Atomization of a Round Coal Water Slurry Jet by an Annular Air Jet
,”
Chem. Eng. Sci.
,
78
, pp.
63
74
.
37.
De Zilwa
,
S. R. N.
,
Khezzar
,
L.
, and
Whitelaw
,
J. H.
,
2000
, “
Flows Through Plane Sudden-Expansions
,”
Int. J. Numer. Methods Fluids
,
32
(
3
), pp.
313
329
.
38.
Qu
,
X.
,
Khezzar
,
L.
, and
Li
,
Z.
,
2012
, “
The Impact and Air Entrainment Process of Liquid Plunging Jets
,”
Proc. Inst. Mech. Eng. Part E-J. Process Mech. Eng.
,
226
(
E3
), pp.
238
249
.
39.
Dumouchel
,
C.
, and
Grout
,
S.
,
2011
, “
On the Scale Diffusivity of a 2D Liquid Atomization Process Analysis
,”
Physica A
,
390
(
10
), pp.
1811
1825
.
You do not currently have access to this content.