This paper reports an experimental study on the effects of adverse pressure gradient (APG) and Reynolds number on turbulent flows over a forward facing step (FFS) by employing three APGs and three Reynolds numbers. A particle image velocimetry (PIV) technique was used to conduct velocity measurements at several locations downstream, and the flow statistics up to 68 step heights are reported. The step height was maintained at 6 mm, and the Reynolds numbers based on the step height and freestream mean velocity were 1600, 3200, and 4800. The mean reattachment length increases with the increase in Reynolds number without the APG whereas the mean reattachment length remains constant for increasing APG. The proper orthogonal decomposition (POD) results confirmed that higher Reynolds numbers caused the large-scale structures to be more defined and organized close to the step surface.

References

References
1.
Shao
,
W.
, and
Agelin-Chaab
,
M.
,
2015
, “
Turbulent Flows Over Forward Facing Steps With Surface Roughness
,”
ASME J. Fluids Eng.
,
138
(
2
), p.
021103
.
2.
Bradshaw
,
P.
, and
Wong
,
F. Y. F.
,
1972
, “
The Reattachment and Relaxation of a Turbulent Shear Layer
,”
J. Fluid Mech.
,
52
(
1
), pp.
113
135
.
3.
Abu-Mulaweh
,
H. I.
,
2005
, “
Turbulent Mixed Convection Flow Over a Forward-Facing Step—The Effect of Step Heights
,”
Int. J. Therm. Sci.
,
44
(
2
), pp.
155
162
.
4.
Tachie
,
M. F.
,
2007
, “
Particle Image Velocimetry Study of Turbulent Flow Over Transverse Square Ribs in an Asymmetric Diffuse
,”
Physics of Fluids
,
19
(
6
), p.
065106
.
5.
Agelin-Chaab
,
M.
, and
Tachie
,
M. F.
,
2008
, “
PIV Study of Separated and Reattached Open Channel Flow Over Surface Mounted Blocks
,”
ASME J. Fluids Eng.
,
130
(
6
), p.
061206
.
6.
Kiya
,
M.
, and
Sasaki
,
K.
,
1983
, “
Structure of a Turbulent Separation Bubble
,”
J. Fluid Mech.
,
137
, pp.
83
113
.
7.
Shao
,
W. J.
, and
Agelin-Chaab
,
M.
,
2014
, “
The Structure of Forward Facing Step Flows in Adverse Pressure Gradient
,”
ASME
Paper No. FEDSM2014-21357.
8.
Shah
,
M. K.
, and
Tachie
,
M. F.
,
2008
, “
Flow Relaxation Past a Transverse Square Rib in Pressure Gradients
,”
AIAA J.
,
46
(
7
), pp.
1849
1863
.
9.
Kim
,
J.
,
Kline
,
S. J.
, and
Johnston
,
J. P.
,
1980
, “
Investigation of a Reattaching Turbulent Shear Layer: Flow Over a Backward-Facing Step
,”
ASME J. Fluids Eng.
,
102
(
3
), pp.
302
308
.
10.
Castro
,
I. P.
, and
Dianat
,
M.
,
1983
, “
Surface Flow Patterns on Rectangular Bodies in Thick Boundary Layers
,”
J. Wind Eng. Ind. Aerodyn.
,
11
(
1
), pp.
107
119
.
11.
Tachie
,
M. F.
,
Balachandar
,
R.
, and
Bergstrom
,
D. J.
,
2001
, “
Open Channel Boundary Layer Relaxation Behind a Forward Facing Step at Low Reynolds Numbers
,”
ASME J. Fluids Eng.
,
123
(
3
), pp.
539
544
.
12.
Largeau
,
J. F.
, and
Moriniere
,
V.
,
2007
, “
Wall Pressure Fluctuations and Topology in Separated Flows Over a Forward-Facing Step
,”
Exp. Fluids
,
42
(
1
), pp.
21
40
.
13.
Shah
,
M. K.
, and
Tachie
,
M. F.
,
2007
, “
PIV Investigation of an Open Channel Flow Over a Forward Facing Step
,”
ASME
Paper No. FEDSM2007-37593, pp.
639
644
.
14.
Sherry
,
M.
,
Jacono
,
D. L.
, and
Sheridan
,
J.
,
2010
, “
An Experimental Investigation of the Recirculation Zone Formed Downstream of a Forward Facing Step
,”
J. Wind Eng. Ind. Aerodyn.
,
98
(
12
), pp.
888
894
.
15.
Sherry
,
M. J.
,
Jacono
,
D. L.
,
Sheridan
,
J.
,
Mathis
,
R.
, and
Marusic
,
I.
,
2009
, “
Flow Separation Characterisation of a Forward Facing Step Immersed in a Turbulent Boundary Layer
,”
Sixth International Symposium on Turbulence and Shear Flow Phenomena
, pp.
1325
1330
.
16.
Camussi
,
R.
,
Felli
,
M.
,
Pereira
,
F.
,
Aloisio
,
G.
, and
Di Marco
,
A.
,
2008
, “
Statistical Properties of Wall Pressure Fluctuations Over a Forward-Facing Step
,”
Phys. Fluids
,
20
(
7
), p.
075113
.
17.
Awasthi
,
M.
,
Devenport
,
W. J.
,
Glegg
,
S. A.
, and
Forest
,
J. B.
,
2014
, “
Pressure Fluctuations Produced by Forward Steps Immersed in a Turbulent Boundary Layer
,”
J. Fluid Mech.
,
756
, pp.
384
421
.
18.
Essel
,
E. E.
,
Thacher
,
E. W.
, and
Tachie
,
M. F.
,
2014
, “
PIV Investigation of Reynolds Number Effects on a Closed Channel Flow Over a Smooth Forward Facing Step
,”
ASME
Paper No. FEDSM2014-21266.
19.
Ren
,
H.
, and
Wu
,
Y.
,
2011
, “
Turbulent Boundary Layers Over Smooth and Rough Forward-Facing Steps
,”
Phys. Fluids
,
23
(
4
), p.
045102
.
20.
Wu
,
Y.
, and
Ren
,
H.
,
2013
, “
On the Impacts of Coarse-Scale Models of Realistic Roughness on a Forward-Facing Step Turbulent Flow
,”
Int. J. Heat Fluid Flow
,
40
, pp.
15
31
.
21.
Lee
,
J. H.
, and
Sung
,
H. J.
,
2009
, “
Structures in Turbulent Boundary Layers Subjected to Adverse Pressure Gradients
,”
J. Fluid Mech.
,
639
, pp.
101
131
.
22.
Aubertine
,
C. D.
, and
Eaton
,
J. K.
,
2005
, “
Turbulence Development in a Non-Equilibrium Turbulent Boundary Layer With Mild Adverse Pressure Gradient
,”
J. Fluid Mech.
,
532
, pp.
345
364
.
23.
Agelin-Chaab
,
M.
, and
Tachie
,
M. F.
,
2008
, “
PIV Study of Adverse and Favorable Pressure Gradient Turbulent Flows Over Transverse Ribs
,”
ASME J. Fluids Eng.
,
130
(
11
), p.
111305
.
24.
Gungor
,
A. G.
,
Maciel
,
Y.
,
Simens
,
M. P.
, and
Soria
,
J.
,
2014
, “
Analysis of a Turbulent Boundary Layer Subjected to a Strong Adverse Pressure Gradient
,”
J. Phys.: Conf. Ser.
,
506
(
1
), p.
012007
.
25.
Kim
,
D. S.
,
White
,
B. R.
,
Ayala
,
A.
, and
Bagheri
,
N.
,
1999
, “
Higher-Order Turbulence Products of Velocity and Temperature for Adverse Pressure Gradient Boundary Layer Flows
,”
Heat Transfer and Fluid Mechanics Institute
, pp.
125
132
.
26.
Spalart
,
P. R.
, and
Watmuff
,
J. H.
,
1993
, “
Experimental and Numerical Study of a Turbulent Boundary Layer With Pressure Gradients
,”
J. Fluid Mech.
,
249
, pp.
337
371
.
27.
De Brederode
,
V. A. S. L.
, and
Bradshaw
,
P.
,
1972
, “
Three-Dimensional Flow in Nominally Two-Dimensional Separation Bubbles: Flow Behind a Rearward-Facing Step I
,” Aeronautical Report No. 72-19, Imperial College of Science and Technology.
28.
Coleman
,
H. W.
, and
Steele
,
W. G.
,
1995
, “
Engineering Application of Experimental Uncertainty Analysis
,”
AIAA J.
,
33
(
10
), pp.
1888
1896
.
29.
Forliti
,
D. J.
,
Strykowski
,
P. J.
, and
Debatin
,
K.
,
2000
, “
Bias and Precision Errors of Digital Particle Image Velocimetry
,”
Exp. Fluids
,
28
(
5
), pp.
436
447
.
30.
Hattori
,
H.
, and
Nagano
,
Y.
,
2010
, “
Investigation of Turbulent Boundary Layer Over Forward-Facing Step Via Direct Numerical Simulation
,”
Int. J. Heat Fluid Flow
,
31
(
3
), pp.
284
294
.
31.
Lumley
,
J. L.
,
1967
, “
The Structure of Inhomogeneous Turbulent Flows
,”
Atmospheric Turbulence and Radio Wave Propagation
,
Nauka
,
Moscow
, pp.
166
178
.
32.
Alfonsi
,
G.
, and
Primavera
,
L.
,
2006
, “
Dynamics of POD Modes in Wall Bounded Turbulent Flow
,”
Computational Science–ICCS
,
Springer
,
Berlin, Heidelberg
, pp.
465
472
.
33.
Shah
,
M. K.
, and
Tachie
,
M. F.
,
2009
, “
Proper Orthogonal Decomposition Analysis of Separated and Reattached Pressure Gradient Flows
,”
AIAA J.
,
47
(
11
), pp.
2616
2631
.
34.
Sirovich
,
L.
,
1987
, “
Turbulence and the Dynamics of Coherent Structures. Part I: Coherent Structures
,”
Q. Appl. Math.
,
45
(
3
), pp.
561
571
.
35.
Meyer
,
K. E.
,
Pedersen
,
J. M.
, and
Özcan
,
O.
,
2007
, “
A Turbulent Jet in Crossflow Analysed With Proper Orthogonal Decomposition
,”
J. Fluid Mech.
,
583
, pp.
199
227
.
36.
Kostas
,
J.
,
Soria
,
J.
, and
Chong
,
M. S.
,
2005
, “
A Comparison Between Snapshot POD Analysis of PIV Velocity and Vorticity Data
,”
Exp. Fluids
,
38
(
2
), pp.
146
160
.
37.
Durgesh
,
V.
,
Naughton
,
J. W.
, and
Whitmore
,
S. A.
,
2013
, “
Experimental Investigation of Base-Drag Reduction Via Boundary-Layer Modification
,”
AIAA J.
,
51
(
2
), pp.
416
425
.
You do not currently have access to this content.