The spherical Couette system, consisting of the flow in the annular gap between two concentric rotating spheres, is a convenient problem for studying the laminar–turbulent transition. Many of the transitional phenomena encountered in this flow are of fundamental relevance for the understanding of global processes in the planetary atmospheres as well as in astrophysical and geophysical motions. Furthermore, the study of spherical Couette flow (SCF) is of basic importance in the field of hydrodynamic stability. This paper focuses principally on the numerical prediction of various transitions between flow regimes in a confined spherical gap between a rotating inner sphere and a fixed outer spherical shell. The finite-volume-based computational fluid dynamics, FLUENT software package, is adopted to investigate numerically the flow of a viscous incompressible fluid in the closed spherical gap. Two important dimensionless parameters completely define the flow regimes: the Reynolds number, Re = 1R12/ν, for the rotation of the inner sphere and the gap width, β = (R2 − R1)/R1 = 0.1, for the geometry. The numerical calculations are carried out over a range of Reynolds number from two until 60,000. The numerical results are compared with the experimental data available in the literature, and the agreement between the two approaches is very good. The laminar–turbulent transition, the onset of different instabilities, the formation mechanisms of various structures, and the flow behavior are examined and described in detail by the pressure field, meridional streamlines, circumferential velocity, and skin friction coefficient. In addition, the velocity time series and the corresponding power spectral density are considered and analyzed over a large range of Reynolds number. Three kinds of fundamental frequencies expressed by F0, F1, and F2 are obtained corresponding to the spiral mode associated with the wavy mode (SM + WM), the wavy mode (WVF), and the chaotic fluctuation (CF), respectively. However, no sharp fundamental frequency components are observed for the turbulent regime.

References

References
1.
Bratukhin
,
I. K.
,
1961
, “
On the Evaluation of the Critical Reynolds Number for the Flow Between Two Rotating Surfaces
,”
J. Appl. Math. Mech.
,
25
(
5
), p.
1286
.
2.
Khlebutin
,
G. N.
,
1968
, “
Stability of Fluid Motion Between a Rotating and Stationary Concentric Sphere
,”
Fluid Dyn.
,
3
(
6
), p.
31
.
3.
Yakushin
,
V. I.
,
1969
, “
Instability of Fluid Motion in a Thin Spherical Layer
,”
Fluid Dyn.
,
4
(
1
), p.
83
.
4.
Sawatzki
,
O.
, and
Zierep
,
J.
,
1970
, “
Dan Stromfeld im Sprit Zwischen zwei Konzentrischen Kugelfl/ichen, yon denen die Innere Rotiert
,”
Acta Mech.
,
9
(
1
), p.
13
.
5.
Munson
,
B. R.
, and
Joseph
,
D. D.
,
1971
, “
Viscous Incompressible Flow Between Concentric Rotating Spheres
,”
J. Fluid Mech.
,
49
(
2
), p.
289
.
6.
Munson
,
B. R.
, and
Menguturk
,
M.
,
1975
, “
Viscous Incompressible Flow Between Concentric Rotating Spheres—Part 3
,”
J. Fluid Mech.
,
69
(
4
), p.
705
.
7.
Wimmer
,
M.
,
1976
, “
Experiments on a Viscous Fluid Flow Between Concentric Rotating Spheres
,”
J. Fluid Mech.
,
78
(
2
), p.
317
.
8.
Yavorskaya
,
I. M.
,
Belyaev
,
Yu. N.
, and
Monakhov
,
A. A.
,
1977
, “
Investigation of the Stability and Secondary Flows in Rotating Spherical Fluid Layers at Arbitrary Rossby Numbers
,”
Dokl. Akad. Nauk. SSSR
,
237
(
4
), p.
804
.
9.
Walton
,
I. C.
,
1978
, “
The Linear Stability of the Flow in a Narrow Spherical Annulus
,”
J. Fluid Mech.
,
86
(
04
), p.
673
.
10.
Yavorskaya
,
I. M.
,
Astaf'eva
,
N. M.
, and
Vvedenskaya
,
N. D.
,
1978
, “
Stability and Non-Uniqueness of Liquid Flow in Rotating Spherical Layers
,”
Dok. Akad. Nauk SSSR
,
241
, pp.
52
55
[Sov. Phys. Dokl.
23
, pp. 461–463 (1978)].
11.
Astaf'eva
,
N. M.
,
Vvedenskaya
,
N. D.
, and
Yavorskaya
,
I. M.
,
1978
, “
Numerical Study of Non-Linear Axisymmetric Flow of Fluid Between Two Concentric Rotating Spheres
,”
Sixth International Conference on Numerical Methods in Fluid Dynamics
, Lecture Notes in Physics, Springer, Berlin, Vol.
90
, p.
5643
.
12.
Nakabavashi
,
K.
,
1978
, “
Frictional Moment of Flow Between Two Spheres, One of Which Rotates
,”
ASME J. Fluids Eng.
,
100
(
1
), p.
97
.
13.
Yavorskaya
,
I. M.
,
Belayev
,
Y. N.
,
Monakhov
,
A. A.
,
Astav'eva
,
N. M.
,
Scherbakov
,
S. A.
, and
Vvedenskaya
,
N. D.
,
1980
, “
Stability, Non-Uniqueness and Transition to Turbulence in the Flow Between Two Rotating Spheres
,” Space Research Institute of the Academy of Science,
USSR, Report No. 595
.
14.
Krause
,
E.
,
1980
, “
Strive for Accuracy—Improvement of Predictions
,”
Comput. Fluids
,
8
(1), p.
31
.
15.
Bartels
,
F.
,
1982
, “
Taylor Vortices Between Two Concentric Rotating Spheres
,”
J. Fluid Mech.
,
119
, p.
1
.
16.
Nakabayashi
,
K.
,
1983
, “
Transition of Taylor–Görtler Vortex Flow in Spherical Couette Flow
,”
J. Fluid Mech.
,
132
, pp.
209
230
.
17.
Soward
,
A. M.
, and
Jones
,
C. A.
,
1983
, “
The Linear Stability of the Flow in the Narrow Gap Between Two Concentric Rotating Spheres
,”
Q. J. Mech. Appl. Math.
,
36
(
1
), p.
19
.
18.
Belyaev
,
Yu. N.
,
Monakhov
,
A. A.
,
Scherbakov
,
S. A.
, and
Yavorskaya
,
I. M.
,
1984
, “
Some Routes to Turbulence in Spherical Couette Flow
,”
Laminar-Turbulent Transition
,
V. V.
Kozlov
, ed.,
Springer
, Berlin, p.
669
.
19.
Schrauf
,
G.
,
1986
, “
The First Instability in Spherical Taylor-Couette Flow
,”
J. Fluid Mech.
,
166
, pp.
287
303
.
20.
Yavorskaya
,
I. M.
, and
Belyaev
,
Y. N.
,
1986
, “
Hydrodynamical Stability in Rotating Spherical Layers: Application to Dynamics of Planetary Atmospheres
,”
Acta Astron.
,
13
(
6/7
) pp.
433
440
.
21.
Bühler
,
K.
, and
Zierep
,
J.
,
1984
, “
New Secondary Flow Instabilities for High Re-Number Flow Between Two Rotating Spheres
,”
Laminar-Turbulent Transition
,
V. V.
Kozlov
, ed.,
Springer
, Berlin, p.
677
.
22.
Bühler
,
K.
, and
Zierep
,
J.
,
1987
, “
Dynamical Instabilities and Transition to Turbulence in Spherical Gap Flows
,”
1st European Turbulence Conference
, Springer, Berlin, p.
16
.
23.
Marcus
,
P. S.
, and
Tuckerman
,
L. S.
,
1987
, “
Simulation of Flow Between Concentric Rotating Spheres—Part 1: Steady States
,”
J. Fluid Mech.
,
185
, pp.
1
30
.
24.
Marcus
,
P. S.
, and
Tuckerman
,
L. S.
,
1987
, “
Simulation of Flow Between Concentric Rotating Spheres—Part 2: Transitions
,”
J. Fluid Mech.
,
185
, pp.
31
65
.
25.
Manneville
,
P.
, and
Tuckerman
,
L. S.
,
1987
, “
Phenomenological Modeling of the First Bifurcations of Spherical Couette Flow
,”
J. Phys.
,
48
(
9
), pp.
1461
1469
.
26.
Wimmer
,
M.
,
1988
, “
Viscous Flow and Instabilities Near Rotating Bodies
,”
Prog. Aerosp. Sci.
,
25
(
1
), pp.
43
103
.
27.
Nakabayashi
,
K.
, and
Tsuchida
,
Y.
,
1988
, “
Spectral Study of the Laminar-Turbulent Transition in Spherical Couette Flow
,”
J. Fluid Mech.
,
194
, pp.
101
132
.
28.
Nakabayashi
,
K.
, and
Tsuchida
,
Y.
,
1988
, “
Modulated and Unmodulated Travelling Azimuthal Waves on Toroidal Vortices in a Spherical Couette System
,”
J. Fluid Mech.
,
195
, pp.
495
522
.
29.
Bühler
,
K.
,
1990
, “
Symmetric and Asymmetric Taylor Vortex Flow in Spherical Gaps
,”
Acta Mech.
,
81
(
1
), pp.
3
38
.
30.
Dumas
,
G.
, and
Leonard
,
A.
,
1994
, “
A Divergence Free Spectral Expansions Method for Three-Dimensional Flows in Spherical-Gap Geometries
,”
J. Comput. Phys.
,
111
(
2
), pp.
205
219
.
31.
Nakabayashi
,
K.
,
Zheng
,
Z.
,
Tsuchida
,
Y.
, and
Morinishi
,
Y.
,
1994
, “
Laminar-Turbulent Transition in Spherical Couette Flow
,”
Laminar-Turbulent Transition
,
R.
Kobayashi
, ed.,
Springer
, Berlin, p.
77
.
32.
Mamun
,
C. K.
, and
Tuckerman
,
L. S.
,
1995
, “
Asymmetry and Hopf Bifurcation in Spherical Couette Flow
,”
Phys. Fluids
,
7
(
1
), pp.
80
91
.
33.
Nakabayashi
,
K.
, and
Tsuchida
,
Y.
,
1995
,”
Flow History Effect on Higher Modes in the Spherical Couette System
,”
J. Fluid Mech.
,
295
, pp.
43
60
.
34.
Egbers
,
C.
, and
Rath
,
H. J.
,
1995
, “
The Existence of Taylor Vortices and Wide-Gap Instabilities in Spherical Couette Flow
,”
Acta Mech.
,
111
, pp.
125
140
.
35.
Hollerbach
,
R.
,
1998
, “
Time-Dependent Taylor Vortices in Wide-Gap Spherical Couette Flow
,”
Phys. Rev. Lett.
,
81
(
15
), p.
3132
.
36.
Zikanov
,
O. Yu.
,
1996
, “
Symmetry-Breaking Bifurcations in Spherical Couette Flow
,”
J. Fluid Mech.
,
310
, pp.
293
324
.
37.
Nakabayashi
,
K.
,
Morinishi
,
Y.
, and
Kobayashi
,
M.
,
1997
, “
Chaotic Behavior of the Laminar-Turbulent Transition in Spherical Couette Flow of Clearance Ratio β = 0.14
,”
Trans. Jpn. Soc. Mech. Eng.
,
63
(
615
), pp.
3499
3504
.
38.
Araki
,
K.
,
Mizushima
,
J.
, and
Yanase
,
S.
,
1997
, “
The Nonaxisymmetric Instability of the Wide-Gap Spherical Couette Flow
,”
Phys. Fluids
,
9
(
4
), pp.
1197
1199
.
39.
Wulf
,
P.
,
Egbers
,
C.
, and
Rath
,
H. J.
,
1999
, “
Routes to Chaos in Wide-Gap Spherical Couette Flow
,”
Phys. Fluids
,
11
(
6
), pp.
1359
1372
.
40.
Harris
,
D.
,
Bassom
,
A. P.
, and
Soward
,
A. M.
,
2000
, “
An Inhomogeneous Landau Equation With Application to Spherical Couette Flow in the Narrow Gap Limit
,”
Physica D
,
137
(
3–4
), pp.
260
276
.
41.
Nakabayashi
,
K.
,
Sha
,
W.
,
2000
, “
Vortical Structures and Velocity Fluctuations of Spiral and Wavy Vortices in the Spherical Couette Flow
,”
Physics of Rotating Fluids
(Lecture Notes in Physics),
C.
Egbers
and
G.
Pfister
, eds.,
Springer
, Berlin, p.
234
.
42.
Sha
,
W.
, and
Nakabayashi
,
K.
,
2001
, “
On the Structure and Formation of Spiral Taylor–Görtler Vortices in Spherical Couette Flow
,”
J. Fluid Mech.
,
431
, pp.
323
345
.
43.
Hollerbach
,
R.
,
Junk
,
M.
, and
Egbers
,
C.
,
2006
, “
Non-Axisymmetric Instabilities in Basic State Spherical Couette Flow
,”
Fluid Dyn. Res.
,
38
(
4
), pp.
257
273
.
44.
Nakabayashi
,
K.
,
Tsuchida
,
Y.
, and
Zheng
,
Z.
,
2002
, “
Characteristics of Disturbances in the Laminar Turbulent Transition of Spherical Couette Flow—Part 1: Spiral Taylor–Görtler Vortices and Travelling Waves for Narrow Gaps
,”
Phys. Fluids
,
14
(
11
), pp.
3963
3972
.
45.
Nakabayashi
,
K.
,
Zheng
,
Z.
, and
Tsuchida
,
Y.
,
2002
,”
Evolution of Mean and Fluctuating Velocity Components in the Laminar-Turbulent Transition of Spherical Couette Flow
,”
Phys. Fluids
,
14
(
8
), pp.
2839
2846
.
46.
Nakabayashi
,
K.
,
Zheng
,
Z.
, and
Tsuchida
,
Y.
,
2002
, “
Characteristics of Disturbances in the Laminar Turbulent Transition of Spherical Couette Flow—Part 2: New Disturbances Observed for a Medium Gap
,”
Phys. Fluids
,
14
(
11
), pp.
3973
3982
.
47.
Loukopoulos
,
V. C.
,
Katsiaris
,
G. A.
, and
Karahalios
,
G. T.
,
2003
, “
A Steady-State Solver for the Simulation of Taylor Vortices in Spherical Annular Flow
,”
Comput. Methods Appl. Mech. Eng.
,
192
(
26–27
), pp.
2993
3003
.
48.
Yuan
,
L.
,
2004
, “
Numerical Study of Multiple Periodic Flow States in Spherical Couette Flow
,”
Sci. China Ser. A
,
47
(
7
), pp.
81
91
.
49.
Nakabayashi
,
K.
,
Sha
,
W. M.
, and
Tsuchida
,
Y.
,
2005
, “
Relaminarization Phenomena and External-Disturbance Effects in Spherical Couette Flow
,”
J. Fluid Mech.
,
534
, pp.
327
350
.
50.
Peralta
C.
,
Melatos
,
A.
,
Giacobello
,
M.
, and
Ooi
,
A.
,
2008
, “
Superfluid Spherical Couette Flow
,”
J. Fluid Mech.
,
609
, pp.
221
274
.
51.
Bühler
,
K.
,
2009
, “
Pattern Formation in Rotating Fluids
,”
J. Therm. Sci.
,
18
(
2
), pp.
109
118
.
52.
Yuan
,
L.
,
2012
, “
Numerical Investigation of Wavy and Spiral Taylor–Görtler Vortices in Medium Spherical Gaps
,”
Phys. Fluids
,
24
(
12
), p.
124104
.
53.
Zhilenko
,
D. Yu.
, and
Krivonosova
,
O. E.
,
2013
, “
Transitions to Chaos in the Spherical Couette Flow Due to Periodic Variations in the Rotation Velocity of One of the Boundaries
,”
Fluid Dyn.
,
48
(
4
), pp.
452
460
.
54.
Tigrine
,
Z.
,
Mokhtari
,
F.
,
Bouabdallah
,
A.
, and
Mahloul
,
M.
,
2014
, “
Experiments on Two Immiscible Fluids in Spherical Couette Flow
,”
Acta Mech.
,
225
(
1
), pp.
233
242
.
55.
Bonnet
,
J. P.
, and
Alziary de Roquefort
,
T.
,
1976
, “Écoulement entre deux sphères concentriques en rotation,”
J. Mec.
,
13
, p.
373
.
56.
Tuckerman
,
L. S.
,
1983
, “
Formation of Taylor Vortices in Spherical Couette Flow
,”
Ph.D. thesis
, Massachusetts Institute of Technology, Cambridge, MA.
57.
Elena
,
L.
, and
Schiestel
,
R.
,
1996
, “
Turbulence Modeling of Rotating Confined Flows
,”
Int. J. Heat Fluid Flow
,
17
(
3
), p.
283
.
58.
Junk
,
M.
, and
Egbers
,
C.
,
2000
,
Physics of Rotating Fluids
(Lecture Notes in Physics),
C.
Egbers
and
G.
Pfister
, eds.,
Springer-Verlag
,
Berlin,
p.
215
.
You do not currently have access to this content.