The investigation of the rotating stall phenomenon appearing in the HYDRODYNA pump-turbine reduced scale model is carried out by performing a large-scale large eddy simulation (LES) computation using a mesh featuring approximately 85 × 106 elements. The internal flow is computed for the pump-turbine operated at 76% of the best efficiency point (BEP) in pumping mode, for which previous experimental research evidenced four rotating stall cells. To achieve an adequate resolution near the wall, the Reynolds number is decreased by a factor of 25 than that of the experiment, by assuming that the flow of our interest is not strongly affected by the Reynolds number. The computations are performed on the supercomputer PRIMEHPC FX10 of the University of Tokyo using the overset finite-element open source code FrontFlow/blue with the dynamic Smagorinsky turbulence model. It is shown that the rotating stall phenomenon is accurately simulated using the LES approach. The results show an excellent agreement with available experimental data from the reduced scale model tested at the EPFL Laboratory for hydraulic machines. The number of stall cells as well as the propagation speed agree well with the experiment. Detailed investigations on the computed flow fields have clarified the propagation mechanism of the stall cells.

References

References
1.
Hasmatuchi
,
V.
,
Farhat
,
M.
,
Roth
,
S.
,
Botero
,
F.
, and
Avellan
,
F.
,
2011
, “
Experimental Evidence of Rotating Stall in a Pump-Turbine at Off-Design Conditions in Generating Mode
,”
ASME J. Fluids Eng.
,
133
(
5
), p.
051104
.
2.
Braun
,
O.
,
2009
, “
Part Load Flow in Radial Centrifugal Pumps
,” Ph.D. thesis, EPFL, Lausanne, Switzerland, No. 4422.
3.
Kline
,
S.
,
1959
, “
On the Nature of Stall
,”
J. Basic Eng.
,
81
(
3
), pp.
305
320
.
4.
Emmons
,
H. W.
,
1959
, “
A Survey of Stall Propagation: Experiment and Theory
,”
J. Basic Eng.
,
81
, pp.
409
416
.
5.
Gu
,
G.
,
Sparks
,
A.
, and
Banda
,
S. S.
,
1999
, “
An Overview of Rotating Stall and Surge Control for Axial Flow Compressors
,”
IEEE Trans. Control Syst. Technol.
,
7
(
6
), pp.
639
647
.
6.
de Jager
,
B.
,
1995
, “
Rotating Stall and Surge Control: A Survey
,”
34th IEEE Conference on Decision and Control
,
IEEE
,
New Orleans, LA
, Vol.
2
, pp.
1857
1862
.
7.
Sinha
,
M.
, and
Katz
,
J.
,
1999
, “
The Onset and Development of Rotating Stall Within a Centrifugal Pump With a Vaned Diffuser
,”
3rd ASME/JSME Joint Fluid Engineering Conference
, pp.
1
7
.
8.
Sinha
,
M.
, and
Katz
,
J.
,
2000
, “
Quantitative Visualization of the Flow in a Centrifugal Pump With Diffuser Vanes—I: On Flow Structures and Turbulence
,”
ASME J. Fluids Eng.
,
122
(
1
), pp.
97
107
.
9.
Sinha
,
M.
,
Pinarbasi
,
A.
, and
Katz
,
J.
,
2001
, “
The Flow Structure During Onset and Developed States of Rotating Stall Within a Vaned Diffuser of a Centrifugal Pump
,”
ASME J. Fluids Eng.
,
123
(
3
), pp.
490
499
.
10.
Sano
,
T.
,
Nakamura
,
Y.
,
Yoshida
,
Y.
, and
Tsujimoto
,
Y.
,
2002
, “
Alternate Blade Stall and Rotating Stall in a Vaned Diffuser
,”
JSME Int. J. Ser. B
,
45
(
4
), pp.
810
819
.
11.
Sano
,
T.
,
Yoshida
,
Y.
,
Tsujimoto
,
Y.
,
Nakamura
,
Y.
, and
Matsushima
,
T.
,
2002
, “
Numerical Study of Rotating Stall in a Pump Vaned Diffuser
,”
ASME J. Fluids Eng.
,
124
(
2
), pp.
363
370
.
12.
Lucius
,
A.
, and
Brenner
,
G.
,
2010
, “
Unsteady CFD Simulations of a Pump in Part Load Conditions Using Scale-Adaptive Simulation
,”
Int. J. Heat Fluid Flow
,
31
(
6
), pp.
1113
1118
.
13.
Lucius
,
A.
, and
Brenner
,
G.
,
2011
, “
Numerical Simulation and Evaluation of Velocity Fluctuations During Rotating Stall of a Centrifugal Pump
,”
ASME J. Fluids Eng.
,
133
(
8
), p.
081102
.
14.
Byskov
,
R. K.
,
Jacobsen
,
C. B.
, and
Pedersen
,
N.
,
2003
, “
Flow in a Centrifugal Pump Impeller at Design and Off-Design Conditions—Part II: Large Eddy Simulations
,”
ASME J. Fluids Eng.
,
125
(
1
), pp.
73
83
.
15.
Kato
,
C.
,
Mukai
,
H.
, and
Manabe
,
A.
,
2003
, “
Large-Eddy Simulation of Unsteady Flow in a Mixed-Flow Pump
,”
Int. J. Rotating Mach.
,
9
(
5
), pp.
345
351
.
16.
Posa
,
A.
,
Lippolis
,
A.
, and
Balaras
,
E.
,
2015
, “
Large-Eddy Simulation of a Mixed-Flow Pump at Off-Design Conditions
,”
ASME J. Fluids Eng.
,
137
(
10
), p.
101302
.
17.
Ausoni
,
P.
,
Farhat
,
M.
,
Escaler
,
X.
,
Egusquiza
,
E.
, and
Avellan
,
F.
,
2007
, “
Cavitation Influence on Von Kármán Vortex Shedding and Induced Hydrofoil Vibrations
,”
ASME J. Fluids Eng.
,
129
(
8
), pp.
966
973
.
18.
Ausoni
,
P.
,
Zobeiri
,
A.
,
Avellan
,
F.
, and
Farhat
,
M.
,
2012
, “
The Effects of a Tripped Turbulent Boundary Layer on Vortex Shedding From a Blunt Trailing Edge Hydrofoil
,”
ASME J. Fluids Eng.
,
134
(
5
), p.
051207
.
19.
Münch
,
C.
,
Ausoni
,
P.
,
Braun
,
O.
,
Farhat
,
M.
, and
Avellan
,
F.
,
2010
, “
Fluid-Structure Coupling for an Oscillating Hydrofoil
,”
J. Fluids Struct.
,
26
(
6
), pp.
1018
1033
.
20.
Crank
,
J.
, and
Nicolson
,
P.
,
1996
, “
A Practical Method for Numerical Evaluation of Solutions of Partial Differential Equations of the Heat-Conduction Type
,”
Adv. Comput. Math.
,
6
(
1
), pp.
207
226
.
21.
Smagorinsky
,
J.
,
1963
, “
General Circulation Experiments With the Primitive Equations
,”
Mon. Weather Rev.
,
91
(
3
), pp.
99
164
.
22.
Germano
,
M.
,
Piomelli
,
U.
, and
Moin
,
P.
,
1991
, “
A Dynamic Subgrid-Scale Eddy Viscosity Model
,”
Phys. Fluids
,
3
(
7
), pp.
1760
1765
.
23.
Lilly
,
D.
,
1992
, “
A Proposed Modification of the Germano Subgrid-Scale Closure Method
,”
Phys. Fluids
,
4
(
3
), pp.
633
635
.
24.
Robinson
,
S.
,
1991
, “
Coherent Motions in the Turbulent Boundary Layer
,”
Annu. Rev. Fluid Mech.
,
23
(
1
), pp.
601
639
.
25.
Chapman
,
D. K.
,
1979
, “
Computational Aerodynamics Development and Outlook
,”
AIAA J.
,
17
(
12
), pp.
1293
1313
.
26.
Choi
,
H.
, and
Moin
,
P.
,
2012
, “
Grid-Point Requirements for Large Eddy Simulation: Chapman's Estimates Revisited
,”
Phys. Fluids
,
24
(
1
), p.
011702
.
27.
Müller
,
A.
,
Dreyer
,
M.
,
Andreini
,
N.
, and
Avellan
,
F.
,
2013
, “
Draft Tube Discharge Fluctuation During Self-Sustained Pressure Surge: Fluorescent Particle Image Velocimetry in Two-Phase Flow
,”
Exp. Fluids
,
54
(
4
), p.
1514
.
28.
Müller
,
A.
,
Yamamoto
,
K.
,
Alligné
,
S.
,
Yonezawa
,
K.
,
Tsujimoto
,
Y.
, and
Avellan
,
F.
,
2015
, “
Measurement of the Self-Oscillating Vortex Rope Dynamics for Hydroacoustic Stability Analysis
,”
ASME J. Fluids Eng.
,
138
(
2
), p.
021206
.
29.
Favrel
,
A.
,
Müller
,
A.
,
Landry
,
C.
,
Yamamoto
,
K.
, and
Avellan
,
F.
,
2015
, “
Study of the Vortex Induced Pressure Excitation Source in a Francis Turbine Draft Tube by Particle Image Velocimetry
,”
Exp. Fluids
,
56
(
12
), pp.
1
15
.
30.
Pacot
,
O.
,
2014
, “
Large Scale Computation of the Rotating Stall in a Pump-Turbine Using an Overset Finite Element Large Eddy Simulation Numerical Code
,” Ph.D. thesis, EPFL, Lausanne, Switzerland, No. 6183.
31.
Pacot
,
O.
,
Kato
,
C.
, and
Avellan
,
F.
,
2014
, “
High-Resolution LES of the Rotating Stall in a Reduced Scale Model Pump-Turbine
,”
IOP Conf. Ser.: Earth Environ. Sci.
,
22
(
2
), p.
22018
.
You do not currently have access to this content.