The goal of this paper is to derive the von Neumann stability conditions for the pressure-based solution scheme, semi-implicit method for pressure-linked equations (SIMPLE). The SIMPLE scheme lies at the heart of a class of computational fluid dynamics (CFD) algorithms built into several commercial and open-source CFD software packages. To the best of the authors' knowledge, no readily usable stability guidelines appear to be available for this popularly employed scheme. The Euler equations are examined, as the inclusion of viscosity in the Navier–Stokes (NS) equation serves to only soften the stability limits. First, the one-dimensional (1D) Euler equations are studied, and their stability properties are delineated. Next, a rigorous stability analysis is carried out for the two-dimensional (2D) Euler equations; the analysis of the 2D equations is considerably more challenging as compared to analysis of the 1D form of equations. The Euler equations are discretized using finite differences on a staggered grid, which is used to achieve equivalence to finite-volume discretization. Error amplification matrices are determined from the stability analysis, stable and unstable regimes are identified, and practical stability limits are predicted in terms of the maximum allowable Courant–Friedrichs–Lewy (CFL) number as a function of Mach number. The predictions are verified using the Riemann problem, and very good agreement is obtained between the analytically predicted and the “experimentally” observed CFL values. The successfully tested stability limits are presented in graphical form, as compared to complicated mathematical expressions often reported in published literature. Since our analysis accounts for the solution scheme along with the full system of flow equations, the conditions reported in this paper offer practical value over the conditions that arise from analysis of simplified 1D model equations.

References

1.
Galpin
,
P.
,
Van Doormaal
,
J.
, and
Raithby
,
G.
,
1985
, “
Solution of the Incompressible Mass and Momentum Equations by Application of a Coupled Equation Line Solver
,”
Int. J. Numer. Methods Fluids
,
5
(
7
), pp.
615
625
.
2.
Patankar
,
S. V.
, and
Spalding
,
D. B.
,
1972
, “
A Calculation Procedure for Heat, Mass and Momentum Transfer in Three-Dimensional Parabolic Flows
,”
Int. J. Heat Mass Transfer
,
15
(
10
), pp.
1787
1806
.
3.
Caretto
,
L.
,
Curr
,
R.
, and
Spalding
,
D.
,
1972
, “
Two Numerical Methods for Three-Dimensional Boundary Layers
,”
Comput. Methods Appl. Mech. Eng.
,
1
(
1
), pp.
39
57
.
4.
Harlow
,
F. H.
, and
Amsden
,
A. A.
,
1971
, “
A Numerical Fluid Dynamics Calculation Method for All Flow Speeds
,”
J. Comput. Phys.
,
8
(
2
), pp.
197
213
.
5.
Harlow
,
F. H.
, and
Amsden
,
A. A.
,
1968
, “
Numerical Calculation of Almost Incompressible Flow
,”
J. Comput. Phys.
,
3
(
1
), pp.
80
93
.
6.
Harlow
,
F. H.
, and
Welch
,
J. E.
,
1965
, “
Numerical Calculation of Time-Dependent Viscous Incompressible Flow of Fluid With Free Surface
,”
Phys. Fluids
,
8
(
12
), p.
2182
.
7.
Ghia
,
K.
,
Hankey
,
W.
, Jr.
, and
Hodge
,
J.
,
1979
, “
Use of Primitive Variables in the Solution of Incompressible Navier-Stokes Equations
,”
AIAA J.
17
(
3
), pp.
298
301
.
8.
Alves
,
L. S.
d.
B.
,
2009
, “
Review of Numerical Methods for the Compressible Flow Equations at Low Mach Numbers
,”
XII Encontro de Modelagem Computacional
, Rio de Janeiro, Brazil, p.
11
.
9.
Bijl
,
H.
, and
Wesseling
,
P.
,
1998
, “
A Unified Method for Computing Incompressible and Compressible Flows in Boundary-Fitted Coordinates
,”
J. Comput. Phys.
,
141
(
2
), pp.
153
173
.
10.
van der Heul
,
D. R.
,
Vuik
,
C.
, and
Wesseling
,
P.
,
2003
, “
A Conservative Pressure-Correction Method for Flow at All Speeds
,”
Comput. Fluids
,
32
(
8
), pp.
1113
1132
.
11.
ANSYS, 2009, “ANSYS Fluent 12.0 User's Guide,” ANSYS, Inc., San Jose, CA.
12.
OpenFOAM 2011, “OpenFOAM User Guide,” OpenFOAM Foundation, London.
13.
Anderson
,
J. D.
and
Wendt
,
J.
,
1995
,
Computational Fluid Dynamics
, Vol.
206
,
McGraw-Hill
, New York.
14.
Morton
,
K.
,
1971
, “
Stability and Convergence in Fluid Flow Problems
,”
Proc. R. Soc. London, Ser. A
,
323
(
1553
), pp.
237
253
.
15.
Chan
,
T. F.
,
1984
, “
Stability Analysis of Finite Difference Schemes for the Advection-Diffusion Equation
,”
SIAM J. Numer. Anal.
,
21
(
2
), pp.
272
284
.
16.
Hindmarsh
,
A.
,
Gresho
,
P.
, and
Griffiths
,
D.
,
1984
, “
The Stability of Explicit Euler Time-Integration for Certain Finite Difference Approximations of the Multi-Dimensional Advection–Diffusion Equation
,”
Int. J. Numer. Methods Fluids
,
4
(
9
), pp.
853
897
.
17.
Wesseling
,
P.
,
1996
, “
von Neumann Stability Conditions for the Convection-Diffusion Equation
,”
IMA J. Numer. Anal.
,
16
(
4
), pp.
583
598
.
18.
Shishkina
,
O. V.
,
2007
, “
The Neumann Stability of High-Order Symmetric Schemes for Convection-Diffusion Problems
,”
Sib. Math. J.
,
48
(
6
), pp.
1141
1146
.
19.
van der Heul
,
D. R.
,
Vuik
,
C.
, and
Wesseling
,
P.
,
2001
, “
Stability Analysis of Segregated Solution Methods for Compressible Flow
,”
Appl. Numer. Math.
,
38
(
3
), pp.
257
274
.
20.
Nerinckx
,
K.
,
Vierendeels
,
J.
, and
Dick
,
E.
,
2007
, “
A Mach-Uniform Algorithm: Coupled Versus Segregated Approach
,”
J. Comput. Phys.
,
224
(
1
), pp.
314
331
.
21.
Chorin
,
A. J.
,
1967
, “
A Numerical Method for Solving Incompressible Viscous Flow Problems
,”
J. Comput. Phys.
,
2
(
1
), pp.
12
26
.
22.
Pulliam
,
T. H.
,
1986
, “
Artificial Dissipation Models for the Euler Equations
,”
AIAA J.
,
24
(
12
), pp.
1931
1940
.
23.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
CRC Press/Hemisphere Publishing
, Washington, DC, p. 210.
24.
Ferziger
,
J. H.
, and
Perić
,
M.
,
1996
,
Computational Methods for Fluid Dynamics
, Vol.
3
,
Springer
,
Berlin, Germany
.
25.
von Neumann
,
J.
, and
Richtmyer
,
R. D.
,
2004
, “
A Method for the Numerical Calculation of Hydrodynamic Shocks
,”
J. Appl. Phys.
,
21
(
3
), pp.
232
237
.
26.
Rigal
,
A.
,
1979
, “
Stability Analysis of Explicit Finite Difference Schemes for the Navier–Stokes Equations
,”
Int. J. Numer. Methods Eng.
,
14
(
4
), pp.
617
620
.
27.
Fromm
,
J. E.
,
1963
, “
A Method for Computing Nonsteady, Incompressible, Viscous Fluid Flows
,” Los Alamos Scientific Lab, Albuquerque, NM, DTIC
Document No. LA-2910
.
28.
Wesseling
,
P.
,
2009
,
Principles of Computational Fluid Dynamics
, Vol.
29
,
Springer Science & Business
, Berlin/Heidelberg, Germany.
29.
Sousa
,
E. L.
,
2003
, “
The Controversial Stability Analysis
,”
Appl. Math. Comput.
,
145
(
2
), pp.
777
794
.
30.
Vichnevetsky
,
R.
, and
Bowles
,
J. B.
,
1982
,
Fourier Analysis of Numerical Approximations of Hyperbolic Equations
, Vol.
5
,
SIAM
, Philadelphia, PA.
31.
Anderson
,
D. A.
,
Tannehill
,
J. C.
, and
Pletcher
,
R. H.
,
1984
,
Computational Fluid Dynamics and Heat Transfer
,
McGraw-Hill Book Company
, New York.
32.
Strikwerda
,
J. C.
,
2004
,
Finite Difference Schemes and Partial Differential Equations
,
SIAM
, Philadelphia, PA.
33.
Lomax
,
H.
,
Pulliam
,
T. H.
, and
Zingg
,
D. W.
,
2013
,
Fundamentals of Computational Fluid Dynamics
,
Springer Science & Business Media
,
Berlin/Heidelberg, Germany
.
34.
Tucker
,
A. B.
,
2004
,
Computer Science Handbook
,
CRC Press
, Boca Raton, FL.
35.
Sousa
,
E.
,
2009
, “
On the Edge of Stability Analysis
,”
Appl. Numer. Math.
,
59
(
6
), pp.
1322
1336
.
36.
Richtmyer
,
R. D.
, and
Morton
,
K.
,
1967
,
Different Methods for Initial Value Problems
, (
Interscience Tracts in Pure and Applied Mathematics
, 2nd ed.), Interscience, New York.
37.
Sengupta
,
T. K.
,
Ganeriwal
,
G.
, and
De
,
S.
,
2003
, “
Analysis of Central and Upwind Compact Schemes
,”
J. Comput. Phys.
,
192
(
2
), pp.
677
694
.
38.
Courant
,
R.
,
1928
, “
Uber die partiellen Differenzengleichungen der mathematischen Physik
,”
Math. Ann.
,
100
(
1
), pp.
32
74
.
39.
Ghia
,
U.
,
Bayyuk
,
S.
,
Habchi
,
S.
,
Roy
,
C.
,
Shih
,
T.
,
Conlisk
,
T.
,
Hirsch
,
C.
, and
Powers
,
J. M.
,
2010
, “
The AIAA Code Verification Project-Test Cases for CFD Code Verification
,”
AIAA
Paper No. 2010-125.
40.
Sod
,
G. A.
,
1978
, “
A Survey of Several Finite Difference Methods for Systems of Nonlinear Hyperbolic Conservation Laws
,”
J. Comput. Phys.
,
27
(
1
), pp.
1
31
.
41.
Schulz-Rinne
,
C. W.
,
Collins
,
J. P.
, and
Glaz
,
H. M.
,
1993
, “
Numerical Solution of the Riemann Problem for Two-Dimensional Gas Dynamics
,”
SIAM J. Sci. Comput.
,
14
(
6
), pp.
1394
1414
.
42.
Kurganov
,
A.
, and
Tadmor
,
E.
,
2002
, “
Solution of Two-Dimensional Riemann Problems for Gas Dynamics Without Riemann Problem Solvers
,”
Numer. Methods Partial Differ. Equations
,
18
(
5
), pp.
584
608
.
43.
Lax
,
P. D.
, and
Liu
,
X.-D.
,
1998
, “
Solution of Two-Dimensional Riemann Problems of Gas Dynamics by Positive Schemes
,”
SIAM J. Sci. Comput.
,
19
(
2
), pp.
319
340
.
44.
Schulz-Rinne
,
C. W.
,
1993
, “
Classification of the Riemann Problem for Two-Dimensional Gas Dynamics
,”
SIAM J. Math. Anal.
,
24
(
1
), pp.
76
88
.
You do not currently have access to this content.